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Abstract: 
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1 Introduction 

The success of QCD as fundamental theory of strong interactions is intimately tied to its 
ability to describe hard inclusive reactions, which has been tested in numerous experiments. 
Progress in the theory and phenomenology of hard exclusive processes [I] has been more 
modest for several reasons. First of all, exclusive processes are in general more difficult to 
study experimentally as they constitute only a small fraction of the inclusive rates at com- 
parable momentum transfers. In addition, there is growing understanding that, although 
the quark counting rules appear to start working at small momentum transfers, QCD fac- 
torization in its standard form [2] may be valid only at very large momentum transfers. This 
is in contrast to inclusive processes like deep-inelastic scattering, where the leading twist 
factorization approximation is adequate already at Q N 1 GeV. Evidently, the situation 
calls for a systematic study of preasymtotic corrections to hard exclusive amplitudes. 

Not much is known yet about these preasymptotic corrections. The task is complicated 
by the fact that it actually comprises two different problems. First, it is not known how to 
combine higher twist contributions to hadron form factors with the so-called “soft” or “end- 
point” contributions which are of the same order of magnitude. Second, in order to be able 
to calculate higher twist corrections, one needs to know both the dependence of the leading 
Fock state wave function - with a minimal number of (valence) partons - on transverse 
momentum and the distribution amplitudes with a non-minimal parton configuration with 
additional gluons and/or quark-antiquark pairs. These two effects are physically different, 
but related to each other by the (exact) QCD equations of motion; taking into account 
one effect and neglecting the other is inconsistent with &CD, unless kinematic suppression 
or enhancement of a particular mechanism can be established. One has to find a basis of 
independent distributions and to develop a meaningful approximation to describe them by 
a minimal number of parameters. 

In this paper we address the second problem only, leaving aside the questions of “end- 
point” contributions and how to generalize the factorization formalism beyond leading twist. 
The main goal of our study is to find out whether higher twist components in hadrons 
have an economic description in &CD. Light-cone distributions beyond leading twist were 
previously addressed in Refs. [3, 4, 5, 6, 7, 81. The existing results are, however, far from 
being complete and sometimes even contradictory. The aim of this paper is to develop 
a systematic formalism for constructing a basis of independent higher twist distributions 
in such a form that it is possible to model them while automatically including all QCD 
constraints. Our approach is an extension of earlier work [7] with the basic idea that the 
equations of motion can be solved order by order in the expansion in conformal spin. These 
relations are exact in perturbation theory although conformal symmetry is broken beyond 
one loop. Taking into account a few low-order terms in the conformal expansion, one obtains 
a consistent set of distribution amplitudes which involve a minimal number of independent 
nonperturbative parameters that can be estimated from QCD sum rules (or, eventually, 
calculated on the lattice). Although in principle this can be done for arbitrary twist, we 
concentrate on twist three distribution amplitudes of vector mesons in this work. A detailed 
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treatment of twist four distributions will be presented elsewhere. 
In Ref. [7], this program was realized for the pion for which a complete set of distributions 

of twist three and twist four is now available. Vector mesons bring in the complication of 
polarization and are more difficult to treat as the meson mass cannot be neglected. This 
requires a generalization of the techniques of [7], which we work out in the present paper. In 
addition, we take into account SU(3) flavour violation effects induced by quark masses and 
construct a complete set of twist three distribution amplitudes for p, w, K* and 4 mesons, 
which is our main result. All necessary nonperturbative constants are calculated from QCD 
sum rules and the scale-dependence is worked out in leading logarithmic approximation. 

Apart from providing the leading corrections to hard exclusive amplitudes, twist three 
distributions are of special interest as they are free from renormalon ambiguities (power 
divergences of the corresponding operators, in a different language) and their evolution 
with Q2 is simple in the limit of a large number of colours, N, + 00, as will be clarified 
in this work. One may hope that these distributions are accessible experimentally. Some 
immediate applications of our results, which we do not pursue in this paper, are to exclusive 
semileptonic and radiative B decays and to hard electroproduction of vector mesons at 
HERA. 

The paper is organized as follows. Section 2 is mainly introductory. We collect neces- 
sary definitions and explain basic ideas. Section 3 contains a detailed study on chiral-odd 
distribution amplitudes, including solution of the equations of motion, conformal expansion 
and renormalization. A similar program is carried out for chiral-even distributions in Sec. 4. 
Section 5 contains explicit models for the p, K* and 4 meson distribution amplitudes up 
to twist three, which involve a minimal number of nonperturbative parameters and satisfy 
all QCD constraints. The final Sec. 6 is reserved for a summary and conclusions. The 
paper contains three appendices: in App. A we collect some useful formulae about orthog- 
onal polynomials, in App. B we elaborate on the structure of conformal expansion for the 
so-called Wandzura-Wilczek contributions, and App. C contains QCD sum rules for the 
nonperturbative expansion coefficients used in Sec. 5. 

2 General Framework 

2.1 Kinematics and notations 

Amplitudes of light-cone dominated processes involving vector mesons can be expressed 
in terms of matrix elements of gauge-invariant nonlocal operators sandwiched between the 
vacuum and the vector meson state, 

Kw~>~[~’ -44-4b- PT 4)’ (2.1) 

where P is a generic Dirac matrix structure and where we use the notation [z, y] for the 
path-ordered gauge factor along the straight line connecting the points x and y: 

[z, y] = Pexp[igi’dt (x - Y),.J’(tx + (I - @/)I- (2.2) 

2 



To simplify notations, we will explicitly consider charged p mesons; the distribution ampli- 
tudes of p” and of K* and 4 mesons can be obtained by choosing appropriate SU(3) currents. 
In order to be able to study SU(3) breaking effects, we keep all quark mass terms. 

The asymptotic expansion of exclusive amplitudes in powers of large momentum transfer 
is governed by contributions from small transverse separations between the constituents, 
which are obtained by expanding amplitudes like (2.1) in powers of the deviation from 
the light-cone x2 = 0. To implement the light-cone expansion in a systematic way, it 
is convenient to use light-like vectors. Let PP be the p meson momentum and ep) its 
polarization vector, so that 

P2 = rnz, eCx) . eCx) = -1, p . e(‘) = 0. (2.3) 

We introduce light-like vectors p and z with 

p2 =o, .z2 =o, 

such that p + P in the limit rnz + 0 and z + x for x2 + 0. From this it follows that 

zp = xp - Pp--$ [XP - $zjGzq] 

= xp - ;P/&g +0(x4) 

=xJl-$J] -;pP$+o(x4)7 

2 
p, = pp - 12 3. 

2 ppz 

Useful scalar products are 

XP = zp = J(xP)” - x2mz7 

m2 p . eCx) = -2~ . eCx). 
2PZ 

(24 

cw 
The polarizaton vector etx) can be decomposed into projections onto the two light-like 
vectors and the orthogonal plane: 

ey = w * ZIP, + w *P> z~ + elCL 0) 
PZ PZ 

(2.6) 



Note that 
(e(‘) . z) = (e(‘) * X). 

In terms of the original variables one has 

Pp(xP) - x,m2, 0) e(‘) = (e(‘) * x> cxpJ2 _ x2m2 + Ed,- P 
P 

We also need the projector onto the directions orthogonal to p and z, 

and will often use the notations 

(2.7) 

(24 

(2.9) 

a. E apzp7 (2.10) 

for an arbitrary Lorentz vector a,. 
We use the standard Bjorken-Drell convention [9] for the metric and the Dirac matrices; 

in particular 75 = iy”y1y2y3, and the Levi-Civita tensor ePv~a is defined as the totally 

antisymmetric tensor with e 0123 = 1. The covariant derivative is defined as D, = 3 - 
d,-igA,, which is consistent with the gauge phase factor (2.2)’ and we also use the nota:ioi 

Fp = 5, + igA,(x) in later sections. The dual gluon field strength tensor is defined as 
G,, = &,~G~“. Finally, we use a covariant normalization for one-particle states, i.e. 
(p-(P,X)Ip-(P’, X’)) = (27T)32P06(3)(P - P’)bxp. 

2.2 Classification of two-particle distribution amplitudes 

By definition, light-cone distribution amplitudes are obtained from Bethe-Salpeter wave 
functions at (almost) zero transverse separations of the constituents, 

(2.11) 

and are given by vacuum-to-meson matrix elements of nonlocal operators on the light-cone: 

(WW’[z7 -zld(-z)Ip- P’, 4). (2.12) 

Note that unlike in Eq. (2.1) the separation between the quark and the antiquark is strictly 
light-like. The expansion of (2.1) near the light-cone in terms of operators with light-like 
separations is the subject of the operator product expansion and considered at length in 
Ref. [lo]. 

It turns out that all quark-antiquark distribution amplitudes of vector mesons can be 
classified in the same way as the more familiar nucleon structure functions (parton distri- 
butions) which correspond to the independent tensor structures in matrix elements of type 
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Twist 2 3 4 

O(l) 0(1/Q) W/Q2) 
spin ave. fr e f4 

SII 91 !a 93 

S_L h 1 ST h3 

Table 1: Spin, twist and chiral classification of the nucleon structure functions. 

VW’, S> I~(z)r[z, -zl+(-4 IN(P7 S>> over nucleon states ] N(P, S)) with momentum P and 
spin S. 

Jaffe and Ji [ll] find nine independent quark distributions whose spin, twist and chiral 
classifications are shown in Tab. 1. The parton distributions in the first row are spin- 
independent, those in the second and third rows describe longitudinally (Si,) and transversely 
(Sl) polarized nucleons. Each column refers to twist: a distribution of twist t contributes 
to inclusive cross sections with coefficients which contain t - 2 or more powers of l/Q. The 
underlined distributions are referred to as chiral-odd, because they correspond to chirality- 
violating Dirac matrix structures r = {aPViy57 1). The other distributions are termed chiral- 
even, because they are obtained for the chirality-conserving structures r = {yP, yPy5}. 

The nucleon parton distributions are defined by 

ow7 s> ITwa,v~ys[~7 -4N-4 IW7 s>> 

J 

1 
(&,p, - &,p,) -Idx e2i’ppzh1(x7 p”) 

. 
+ (PPZ~ - P~zp) (p”. G2 M2 I 

1 
-ldx e2izP*zhL(x7 p2) 

M2 1 
+ (&Jv - S~uZp)-- J p*z -1 

dx eaizp”h3(x, /-Lo) , 1 
(N(P, S)@(z)[z, -z]$(-z)IN(P, S)) = 2M J’ dxe2izp’te(x7~2)7 

-1 

(2.13) 

(2.14) 

vv7 s> IIWYAZ’ -4!+4 INP7 w 

[J 

1 
=2 P, 

M2 1 
-1 

dx eaizp”fl (x, p2) + zp E l,dx e2izpcpzf4(x7 P”) 1 7 (2.15) 

(N(P7 S)~~(+Y/Y~[Z, -47,&4lN(P, S)) 
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Twist 2 3 4 

Table 2: Spin, twist and chiral classification of the p meson distribution amplitudes. 

J 1 
dx e2i’p’zgl (x7 p2) + Sl, 

-1 
du e2i’p’zgT( x7 /.h”) 

. 1 

+ z~ @“. G2 M2 -Idx e2izPpzg3(x7 $) s 1 7 (2.16) 

where Pp and S, are decomposed similarly to (2.4) and (2.6)’ respectively, with mP replaced 
by the nucleon mass M; x is the Bjorken scaling variable. The nucleon spin vector is 
normalized as S . S = -1, which differs from the definition used in [ll] by a factor M2. 

The analysis of vector meson distribution amplitudes reveals an analogous pattern, which 
is no surprise as the operator structures are the same and the p meson polarization vec- 
tor formally substitutes the nucleon spin vector in the Lorentz structures. We find eight 
independent two-particle distributions whose classification with respect to spin, twist and 
chirality is summarized in Tab. 2. One distribution amplitude is obtained for longitudinally 
(e/l) and transversely (el) polarized p mesons of twist 2 and twist 4, respectively. On the 
other hand, the number of twist 3 distribution amplitudes is doubled for each polarization. 
Due to this analogous structure we take over the notations from Tab. 1 for some quantities. 
Again, the higher twist distribution amplitudes contribute to a hard exclusive amplitude 
with additional powers of l/Q compared to the leading twist 2 ones. The underlined dis- 
tribution amplitudes are chiral-odd, the others chiral-even. Because the matrix element 

(W44~[z, -44-4Ip- (4 A>> d e en P d s on the polarization vector ef) linearly, there is no 
spin-independent distribution amplitude. This is in contrast to the nucleon parton distri- 
butions of Tab. 1, where the dependence on the polarization vector SP is determined by the 
density matrix (1 + y5$)/2 which contains a spin-independent part. One more difference is 
that ef) for the p meson is a vector, while SP for the nucleon is a pseudovector. Thus, an 
insertion of additional iy5 is necessary in order that matrix elements of relevant operators 
have the analogous Lorentz decomposition. 

The explicit definitions of the chiral-odd p distributions are: 

(Olfi(zb,v[z7 -44-z) Ip- (P> 4) = 

6 



+ (P,zv - P&p>- 

+ A(ey)z - e(‘) 
2 P” IVZJ - mz ‘du ei@“h3(u, p2) 

J 1 7 p-z 0 
(2.17) 

(Ol+>[z, -zld(-4 Ip- (P, 4) = -i f; - fp mUzpm’) (e(‘) . z)mz i1dueitp”h:;)(u7 p2), 

(2.18) 
while the chiral-even distributions are defined as (cf. [12]) 

(OI~+Y&, +4-z) Ip- (P, 4) = 
1 
du e”~p’z$ll (u, ,!A’) + ey/! J ,ldu eicp”g~) (u, ,x2) 

1 e(‘) . z -- -m2 ’ 
2z”(p.z)2 p 0 s 

du eiQ”g3 (u, p”) 1 (2.19) 

and 

0’b%+~,~:,[z7 -z]d(-z)Ip-(P, A)) = 

=- i fp - f~mu~pmd) mpcpU(2~e~~p,zp ~1due”B*zg~‘(u7 p”). (2.20) 

Here and below we use the shorthand notation 

5 = u - (1 - u) = 2u - 1. 

The distribution amplitudes are dimensionless functions of u and describe the probability 
amplitudes to find the p in a state with minimal number of constituents - quark and 
antiquark - which carry momentum fractions u (quark) and 1 -u (antiquark), respectively, 
and have a small transverse separation of order l/cl. The nonlocal operators on the left- 
hand side are renormalized at scale ,!L, so that the distribution amplitudes depend on ,U as 
well. This dependence can be calculated in perturbative QCD and will be considered below 
in Sets. 3 and 4. 

The vector and tensor decay constants fp and fp’ are defined as usually as 

(W(O)@(O) Ip-(P7 4) = fpmp&?, (2.21) 

(OIG(0)o,yd(O)lp-(P, A)) = ifT(eF)P, - eiA)Pp). 

(‘I All eight distributions 4 = {~II, 41, g1 7 g1 7 (a) hct), hfi”’ , h3, gs} are normalized as ,, 

J ‘duqb(u) = 1, 
0 

(2.22) 

(2.23) 
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which can be checked by comparing both sides of the defining equations in the limit zP + 0 
and using the equations of motion. The rationale for keeping the (tiny) corrections propor- 
tional to the u and d quark masses mU and md is that it will allow us to calculate the SU(3) 
breaking corrections for K* and C#J mesons. 

Note that the meson-to-vacuum matrix element vanishes for I = iy5, because it is not 
possible to construct a pseudoscalar quantity from p,, zP7 and ep). On the other hand, 
(2.20) would correspond to (2.15) which defines the spin-averaged nucleon distributions and 
is the only exception to the complete analogy between the nucleon distribution functions 
and the p meson distribution amplitudes. In this case it is the difference in parity between 
ep) and SP7 which leads to a completely different decomposition of the matrix elements. 

Because of the analogous structure, the twist classification of the various distributions 
does not require a separate study and can be inferred directly from [ll], see Tab. 2. Its 
physical interpretation, however, deserves a discussion. 

One convenient way to understand the twist classification of distribution amplitudes 
directly from their definitions is to go over to the infinite momentum frame p. z N Q + 00. 
From (2.6) it follows that in this frame (e@).z) N Q and ey’ N 1. This determines the power 
counting in Q of various terms on the right-hand side of (2.17) and (2.19)’ for example: The 
first, second, and third terms behave as O(Q), O(1) and 0(1/Q), respectively, and thus 
correspond to increasing twist. 

A mathematically similar, but conceptually different approach to twist counting is based 
on the light-cone quantization formalism [13, 1, 111. In this approach quark fields are 
decomposed into “good” and “bad” components, so that $ = $J++$J- with $+ = (l/2)7*7.7./~ 
and $- = (1/2)y.y*$. As discussed in [ll], a “bad” component $J- introduces one unit of 
twist. Therefore, a quark-antiquark operator of type iid contains twist 2 (u+d+), twist 3 
(fi+d-, u-d+), and twist 4 (u-d-) contributions. This explains why the number of twist 3 
distribution amplitudes is doubled compared with the twist 2 and twist 4 ones (see Tab. 2). 

The physical content of this classification is that a “good” component $+ represents an 
independent degree of freedom corresponding to the particle content of the “Fock state”. 
On the other hand, the “bad” components are not dynamically independent, but can be 
expressed in terms of the higher components in the Fock wave function with a larger number 
of constituents, in particular corresponding to a coherent quark-gluon pair. Only the twist 2 
distribution amplitudes correspond to the valence quark-antiquark component in the p me- 
son wave function, while the higher twist amplitudes involve contributions of multi-particle 
states. This point will be discussed in detail in Sets. 3 and 4. 

One important comment is in order. The definition of twist based on power counting in 
the infinite momentum frame is convenient, because it is directly related to the power of l/Q, 
with which the corresponding distributions appear in the physical scattering amplitudes, 
and hence is frequently employed in recent works [ll]. On the other hand, this definition is 
not Lorentz invariant and does not match the conventional and more consistent definition 
of twist as “dimension minus spin” of the relevant operators. For example, the nucleon 
structure function gT which is identified as twist 3 by power counting in fact contains 
contributions of both operators of twist 2 and twist 3. Similarly, the distribution amplitudes 
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of vector mesons that were identified as twist 3 above, actually contain contributions of 
twist 2 operators as well. In Sets. 3 and 4 we will study in detail the operator structure of 
twist 3 distribution amplitudes based on the operator product expansion. In this context 
the conventional “operator” definition of twist will be more adequate. The mismatch of 
different definitions of twist has to be kept in mind, but hopefully will not yield confusion. 

To summarize, Eqs. (2.17)-(2.20) define a complete set of valence light-cone distribution 
amplitudes and provide full information on the quark-antiquark component of the Fock 
wave function of the p meson at zero transverse separation. As mentioned above, not 
all of these distributions are independent. In the following sections we will derive exact 
relations between the twist 3 quark-antiquark distribution amplitudes and those involving 
one additional gluon, which are introduced below. 

2.3 Three-particle distribution amplitudes of twist three 

Higher Fock components of the meson wave function are described by multi-particle distri- 
bution amplitudes. In this paper we will explicitly deal with three-particle twist 3 quark- 
antiquark-gluon distributions, defined as 

(W(Z)Y&, vz]gG,.&z)[vz, -z]d(-z)lp-(P, 4) = b&&~ - pye$f3”,v(v,pz) + . . . 
(2.24) 

(OIWY~Y~[Z~ vzlg~pv(vz)[vz7 -zld(-z)Ip-(P, A>> = pa[pve$ - p,&]f~.A(w-=) + . . . 
(2.25) 

(Ol~(z>~ap[z, vz]gG,&)[vz, -z]d(-z)lp-(P7 A)) = 

etx) . z 
= ,(pz)[paPp!?s’y - PpP,dv - PcxPl4~p + Pi3PL4?&lf,r,mPnv’P4 + * * * 7 (2.26) . 

where the ellipses stand for Lorentz structures of twist higher than three and where we 
used the following shorthand notation for the integrals defining three-particle distribution 
amplitudes: 

3(v7 pz) = / ~~e-Cz(cr~-crd’v~g’3(~d7 au7 as). (2.27) 

Here 3 = {V, A, 7) re f ers in an obvious way to the vector, axial-vector and tensor distribu- 
tions, QJ is the set of three momentum fractions: o!d (d quark), CX, (u quark) and o+ (gluon), 
and the integration measure is defined as 

The normalization constants fg, f& fi$, are defined in such a way that 

J Da, (ad - au) v(ad7 au7 a,> = 17 

(2.28) 
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J % (ad - a,) 7(&l, a,, &J) = 1. (2.29) 

Choosing the normalization in this way we anticipate that the function A is symmetric and 
the functions V and ‘T are antisymmetric under the interchange Q, f) o!d in the SU(3) 
limit (cf. [3]), which follows from the behaviour of the corresponding matrix elements under 
G-parity transformations. 

With these major definitions at hand, we now proceed to a systematic study of the 
twist 3 distribution amplitudes. 

3 Chiral-odd Distribution Amplitudes 

This section is devoted to the general discussion of chiral-odd distributions of twist 3. We 
demonstrate that the two-particle distribution amplitudes h\/)(u, ,!.J’) and h\;)(u, p2) can be 
eliminated in favour of independent dynamical degrees of freedom and expressed in terms of 
leading twist two- and three-particle distributions. The corresponding relations are worked 
out in detail and solved explicitly. A similar relation between the nucleon structure function 
g1 and the twist 2 part of gT is known as Wandzura-Wilczek relation [14]. We also investigate 
the expansion of twist 3 distributions in terms of matrix elements of conformal operators. 
We demonstrate that the equations of motion are satisfied order by order in the conformal 
expansion which provides, for this reason, a systematic approach to the construction of 
models of distribution amplitudes, consistent with QCD constraints. The renormalization 
of all distributions is worked out in the leading logarithmic approximation. 

3.1 Equations of motion 

The basis of twist 3 distributions defined in Sec. 2 is overcomplete. Due to the QCD 
equations of motion, the number of independent degrees of freedom is less than the number 
of independent Lorentz structures, and our first task will be to reveal the corresponding 
constraints. 

The standard technique for this purpose is to derive relations between towers of local 
operators which arise in the Taylor expansion of the nonlocal operators in Eqs. (2.17)’ (2.18) 
and whose matrix elements are just moments of the distribution amplitudes. A more elegant 
and economic approach is to use exact operator identities between the nonlocal operators 
[5, 71 (see also [lo]). In the present context, we need the identities 

; {u(x)o~,x~[x, -x]d(-x)} = 
Y 

‘J 1 
=2 

-1 
dv v +++k-xp[x, vx]xpgGpp(vx)[vx7 -x]d(-x) 
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- iSpap {u(x)[x, -x]d(--x)} - (mu - m&(x) jc [x7 -x]d(-x), (34 

u(x)[x, -x]d(-x) - fi(O)d(O) = 

1 
= J J dt 

0 
-1 dv u(tx)x”aap[tx7 vx]x’LgG,p(vx)[vx7 -tx]d(-tx) 

+ i l’dt da {u(tx)a,pxP[tx7 -tx]d(-tx)) 

+i(m, + md) ildt fi(tx) jc [tx, -tx]d(-tx). (3.2) 

Here we introduced a shorthand notation for the derivative over the total translation: 

a, {qtx)r[tx, -tx]d(-tx)} E $- {qtx + y)r[tx + ~7 -tx + yl+tx + YH 7 (3.3) 
a !J+O 

with the generic Dirac matrix structure I’. 
In the light-cone limit x2 + 0 matrix elements of the operators on both sides of Eqs. (3.1) 

and (3.2), sandwiched between the vacuum and the p meson state, can be expressed in terms 
of the distribution amplitudes defined in Sec. 2: 

(Olf@+3wxv[x7 -x]d( -2) Ip- (P, A>> = 

= if: 
{( 

ep _ w * 4 px Pp (Px) L’du eitp*s[$l(u, p2) + 0(x2)] 

-m~(e’~~x) (xp - gPp) ~1duefp’~[h/lt’(u,~2) - ol(u7p2)]} 7 (3.4) 

KG44 [x7 -44-x) Ip- (P, 3) = 

mu+md 1 

mP 
(e (‘) - x)mz J 0 

du eiSP’z [hf)(u, p”) + 0(x”)] 7 (3.5) 

and likewise for three-particle distributions. 
The matrix elements of Eqs. (3.1) and (3.2) yield a system of integral equations between 

two- and three-particle light-cone distribution amplitudes:’ 

-ipz i’du eiQzE hf/)(u) - 2 d’du eiQZ (hf/)(u) - 41(u)) = 

= <G(pz)21tdv vT(v,pz) + (1 - S+) (p~)~Jd’ eiEPzh:;)(u) + ic5-pz~1dueiez~~I(u)7 (3.6) 

‘The suppressed corrections 0(x2) drop out; the 0(x2) term in the Lorentz structure in the second line 
of (3.4), however, does give a contribution to the left-hand side of (3.1) after taking the derivative with 
respect to zP. 
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(1 - J+)lrdue i9zhf;)(u) = i<$pzil tdt 11 dv T(v, tpz) + i’dt ildu eittPzhf)(u) 

-6+ l J J dt 
0 0 

‘du ei@PZq+ (u), (3.7) 

where we have discarded all corrections of order x2, set xP = z,, and introduced the notations 

(j* = $mukmd7 
P mP 

+$-. 
PrnP 

(3.8) 

Eqs. (3.6) and (3.7) are exact in &CD. Note the terms with total derivatives in (3.1) and 
(3.2)’ which induce mixing between hfr)(u) and hf:)(u). S UC contributions are specific for h 
exclusive processes and have no analogue in deep-inelastic scattering. Note also that quark 
mass corrections bring in the leading twist chiral-even distribution 411(u). 

We can solve Eqs. (3.6) and (3.7) for h\;)(u) and hf;‘( ) u in t erms of the other distributions. 
To simplify the algebra, it is convenient to consider moments in an intermediate step. 
Defining 

M/j* = oldu ~“qi,,,Ju), J M;)‘@) = l’du Enh[;)‘@)(u) (3.9) 
and 

7,(v) = (q&v,r) 
I J 

= Da (ad - &.J - vag)nT(&j7 au, &J) (3.10) 
r=o 

and expanding (3.6) and (3.7) in powers of (pz), we obtain 

jj,f;) - (n - ‘In MC’) +& n 
n-k2 n-2 n-k2 

J,& -CT cn - lb 
3p n-l-2 J ldv v7-- 

n 2 -I 
(v) = 0 

(3.11; . 

(1 _ J,) Mb) - 1 M(t) + 6 
n n+l n 

1 Ml1 - CT 
+n+l n 

3p& j_:dv7,_l(v) = 0. (3.12) 

Combining these two equations, one gets the following recurrence relations for h//l and h;;‘: 

(n + 2) M$) - n Mti, = 2Mi + <z 1’ dv {(n - l)nv7,-2(v) + (n - 2)nx-s(v)} 
-1 

-S+ n M/-, - 6- n Ml’- n 17 (3.13) 

(l-6,){(n+l)(n+2)Mt)-(n-l)nM,!$,} = 

(3.14) 



Recurrence relations of this type are easily solved by transforming them into differential 
equations. For instance, for the distribution amplitude h:;)(u) one finds a second order 
equation: 

with 

(1 - S,) uii (h/;))“(u) = - G(u) (3.15) 

Here and below we use the shorthand notation u = 1 - u. The solution of this equation 
with boundary conditions specified by the values of the first two moments reads 

(1 - S,) h;;)(u) = ajdv : Q(v) + u jdv ; a(v). 
V 

(3.17) 
0 u 

The solution for hf;)(u) can be obtained in a similar manner and reads: 

h//)(u) = f < jdv; Q(v) - ]dv; Q(v) + S+q$(u) 
0 21 

(3.18) 

According to the various “source” terms on the right-hand side of (3.13) and (3.14)’ one 
can decompose the solution in an obvious way into three pieces as 

h{/)(u) = h,, (t)WW(u) + hf)‘(u) + hf;)m(u)7 (3.19) 

h\;)(u) = h,, (s)ww(u) + hfJg(u) + h\;)m(U)7 (3.20) 

where hf;)WW(u) and hf:)ww (u) denote the “Wandzura-Wilczek” type contributions of 

twist 2 operators, h\:jg(u) and h\;jg(u) stand for contributions of three-particle distribu- 

tions and hf:)“(u) and hf;jrn( u are due to the quark mass corrections. In particular, we ) 
get 

h(t)ww 
()=t(J 

’ dvh(V) 
J 

’ 
II u 

dv h(‘) 
7 

0 v u V 

h\;)ww(u) = 2 aJUdvu + uJ’ &QI’“‘) . 
0 V U V 

13 

(3.21) 

(3.22) 



These are the analogues of the Wandzura-Wilczek contributions to the nucleon structure 
functions @(x7 Q”) [14] and hL(x, Q2) [ll]. 

The relations Eqs. (3.17) and (3.18) are the principal results of this section: chiral-odd 
two-particle distribution amplitudes of twist 3 are expressed in terms of the leading twist 
amplitudes and the three-particle twist 3 distribution. In the next subsection we will discuss 
how to proceed further with this rather complicated formal solution, concentrating on the 
massless quark limit. 

3.2 Conformal expansion 

The conformal expansion of light-cone distribution amplitudes is analogous to the partial 
wave expansion of wave functions in standard quantum mechanics. In conformal expansion, 
the invariance of massless QCD under conformal transformations substitutes the rotational 
symmetry in quantum mechanics. In quantum mechanics, the purpose of partial wave 
decomposition is to separate angular degrees of freedom from radial ones (for spherically 
symmetric potentials). All dependence on the angular coordinates is included in spherical 
harmonics which form an irreducible representation of the group O(3), and the dependence 
on the single remaining radial coordinate is governed by a one-dimensional Schrodinger equa- 
tion. Similarly, the conformal expansion of distribution amplitudes in QCD aims to separate 
longitudinal degrees of freedom from transverse ones. All dependence on the longitudinal 
momentum fractions is included in terms of functions (orthogonal polynomials) forming irre- 
ducible representations of the so-called collinear subgroup of the conformal group, SL(2,R), 
describing Mobius transformations on the light-cone. The transverse-momentum depen- 
dence (the scale-dependence) is governed by simple renormalization group equations: the 
different partial waves, labelled by different “conformal spins”, behave independently and 
do not mix with each other. Since the conformal invariance of QCD is broken by quantum 
corrections, mixing of different terms of the conformal expansion is only absent to leading 
logarithmic accuracy. Still, conformal spin is a good quantum number in hard processes, 
up to small corrections of order CX’,. 2 Application of conformal symmetry to the studies of 
exclusive processes in leading twist have received a lot of attention in the literature, see 
e.g. [15, 16, 171. 

Despite certain complications, the conformal expansion presents a natural approach to 
the study of higher twist distributions, which has even more power than in leading twist. 
The reason is that conformal transformations commute with the exact QCD equations of 
motion since the latter are not renormalized2. Thus, the equations of motion can be solved 
order by order in the conformal expansion. In this section, we use the approach of [18, 71 
to work out the explicit form of the conformal expansion for the chiral-odd distributions 
$1(u), h\:)(u), h/;)(u) and 7(a), and solve the constraints (3.19) and (3.20) order by order 
in conformal spin. 

Since quark mass terms break the conformal symmetry of the QCD Lagrangian explicitly, 
one might expect difficulties to incorporate SU(3) breaking corrections in the formalism. In 

2More precisely, one can regularize the theory in such a way as to preserve the equations of motion. 
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fact, the inclusion of quark mass corrections turns out to be straightforward and produces 
two types of effects. First, matrix elements of conformal operators are modified and in 
general do not have the symmetry of the massless theory. This is not a “problem”, since the 
conformal expansion is designed to simplify the transverse momentum dependence of the 
wave functions by relating it to the scale dependence of the relevant operators. This depen- 
dence is given by operator anomalous dimensions which are not affected by quark masses, 
provided they are smaller than the scales involved. Second, new higher twist operators arise, 
in which quark masses multiply operators of lower twist, see the previous section. These 
additional operators, again, do not pose a “problem” and can be expanded systematically 
in conformal partial waves, leaving the quark masses as multiplicative factors. Explicit ex- 
amples are considered later in Sec. 5, while in this section we neglect operators proportional 
to the quark masses and set 6* = 0 in the formulae obtained in Sec. 3.1. 

The conformal expansion of distribution amplitudes is especially simple when each con- 
stituent field has fixed (Lorentz) spin projection onto the light-cone. Such constituent fields 
correspond to the so-called primary fields in conformal field theories, and their conformal 
spin equals 

1 

j = ; (Z+ s), (3.23) 

where 1 is the canonical dimension and s the (Lorentz) spin projection. Multi-particle states 
built of primary fields can be expanded in increasing conformal spin: the lowest possible spin 
equals to the sum of spins of constituents, and its “wave function” is given by the product 
of one-particle states. This state is nondegenerate and cannot mix with other states because 
of conformal symmetry. Its evolution is given, therefore, by a simple renormalization group 
equation and one can check (see Sec. 3.3) that the corresponding anomalous dimension is 
the lowest one in the whole spectrum. Therefore, this state is the only one which survives in 
the formal limit Q2 + 00; following established tradition we will refer to the multi-particle 
state with the minimal conformal spin as “asymptotic distribution amplitude”. 

An explicit expression for the asymptotic distribution amplitude of a multi-particle state 
built of primary fields was obtained in Refs. [18, 71: 

bS( Ql, Q2, - - - ) %> = 
r[2jl +... + ?A @-1 2jz-1 2j,-1 

vu11 . . . r[2j,] 
Q‘J . . .am . (3.24) 

Here the j, are the conformal spins of the constituent fields (quark or gluons with fixed 
spin projections). This distribution has conformal spin j = jr + . . . + j,. Multi-particle 
irreducible representations with higher spin j + n, n = 1’2, . . . are given by orthogonal 
polynomials of m variables (with the constraint Cp=, ok = 1 ) with the weight function 
(3.24). 

A classical example is the leading twist quark-antiquark distribution amplitude. The 
distribution amplitude 41(u), defined in (2.17)’ has the expansion 

$1(u) = 611U.g akCi’2([)7 (3.25) 
n=O 
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where Cii2 ([) are Gegenbauer polynomials (see e.g. [19]). The dimension of quark fields is 
I = 3/2 and the leading twist distribution corresponds to positive spin projection s = +1/2 
for both the quark and the antiquark. Thus, according to (3.23), the conformal spin of each 
field is j, = j, = 1; the asymptotic distribution amplitude (3.24) equals &(o+, CL~) = 6aqaq 
and has conformal spin j = 2. Taking into account oq + oq = 1 and denoting u = oq we 
arrive at the first term in the expansion (3.25). The Gegenbauer polynomials correspond to 
contributions with higher conformal spin j + n and are orthogonal over the weight function 
6uii. 

Note that a: = 1 due to the normalization condition (2.23). In the strict massless 
limit only the terms with even n survive in Eq. (3.25) because of G-parity invariance. The 
conformal expansion, however, can be performed at the operator level and is disconnected 
from particular symmetries of states such as G-parity. The following discussion is, therefore, 
valid for arbitrary n. We keep terms with n = 21c+l for the later discussion of SU(3) breaking 
corrections. 

The conformal expansion of the twist 3 two-particle distribution amplitudes h/;)(u) and 

h:;)(u) is less immediate. As a first step, one has to decompose them into components 
built of primary fields - with fixed spin projections. To this end, we define a set of 
auxiliary amplitudes h+$(u) and h&T(u) using the spin projection operators P+ = (1/2)y,y. 
and P- = (1/2)y.y, to single out quark states with s = +1/2 and s = -l/2, respectively, 
(see [7, 201): 

(Ol~(z)~-~*[z, -z]d(-z)Ip-(P,X)) = f:rnz * Jiduei~Pzh~~(u)7 p-z 0 (3.26) 

(O~~$Z)~,Y.[Z, -z]d(-2)/p-(P, A)) = f;rnz e(X) J’ du$P”h~t(u), p*z 0 (3.27) 

which are related to h//)(u) and hi;‘(u) by (see (2.17)’ (2.18)) 

I dhf)(u) 
htJ(u) = h//)(u) + 5 du 7 (3.28) 

I dh{;)(u) 
hit(u) = -h;;)(u) + 5 du . 

The conformal expansion of hfd(u) and h”t (u) is straightforward and is given by 

htL(u) = 2u e h;4P;1y0)(<) 7 

n=O 

hit(u) = 2u 2 hfPFj1)(Q7 
n=O 

16 

(3.29) 

(3.30) 

(3.31) 



where P,$‘j’) (0 are Jacobi polynomials (see e.g. [19]) and the n-th term corresponds to 
conformal spin j = n + 3/2. Substituting these expansions in (3.28) and (3.29) and using 
the identities (A.l), (A.lO) and (A.ll) in App. A, we obtain 

hfp(u) = ,J4 (Hn - Hn-1) CA’2(t) + C (hn - k-1) CA’2(t)7 (3.32) 
, , I... n=1,3,5,... 

h;;)(u) = 4uii c 
Hn - Hn+l 

n=0,2,4,... (n + l)(n + 2) cY2w + ,=g5 (,h; ;(hn”:‘2)cm 

, , ,*** 

where H-1 = h-1 = 0 is implied, and 

H, E 
h;‘. - (-l)“h$ 

2 7 

h, 3 
h;, + (-l)“hit 

2 7 

for n = 0,1,2,. . . correspond to G-parity conserving and 

(3.34) 

G-parity violating contributions, . 
respectively. Note that the coefficient in front of each orthogonal polynomial in (3.32) and 
(3.33) does not correspond to a definite conformal spin; in contrast to (3.25)’ (3.30)’ and 
(3.31)’ it is rather given by difference between the contributions of two successive conformal 
spins. 

The 
another 

conformal expansion of the twist 3 three-particle distribution amplitude gives yet 
example for the general expression Eq. (3.24). The expansion reads 

7(&j, Q,, 1 - ad - CL’,) = 360a,ja,(l - ad - CXu)2 5 W&Jk,l(Qd, au)7 (3.35) 
k,l=O 

where Jk,l(o!d, a,) = Jk,l(6,2,2, f&, a,) are particular Appell polynomials of two variables 
(see p269 of [19]). The conformal spin of a generic term in this expression equals j = 
k + I + 7/2 and is the same for all contributions with equal sum n = Ic + 1. This illustrates 
that three-particle conformal representations are degenerate; the number of independent 
operators with the same spin in fact increases with the spin. Conformal symmetry does not 
allow mixing between contributions with different j = n+7/2; it does allow, however, mixing 
with each other of different states with the same value of j. Therefore, the mixing matrix 
for higher twist operators becomes only block-diagonal in the conformal basis, instead of 
being diagonalized like in leading twist. 

Next, we are going to demonstrate that conformal expansion is fully consistent with the 
equations of motion. To this end we need to show that the conformal expansion coefficients 
for two-particle twist 3 distributions can be expressed in terms of the expansion coefficients 
for three-particle distributions with the same conformal spin, and we need to separate the 
Wandzura-Wilczek contributions. The calculation is straightforward, although somewhat 
tedious. 
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We decompose 
H,, = H,ww + Hi, h, = h,WW + h;, (3.36) 

and start with the Wandzura-Wilczek contributions (3.21) and (3.22) which give rise to 
auxiliary amplitudes htlWW(u) with 

ht$WW(u) = 2u - Judv!tk@ + J1&!dd 
0 a u V 

h~~WW(u) = zu - Judv!!$ + J’ dvf!&) . 
0 u V 

(3.37) 

(3.38) 

The integrals on the right-hand side of (3.37) and (3.38) can easily be done using (A.3) and 
(A.12): 

- J u,Tiud + 
0 v J 1&!a = -3 2 a*p’yp(~) 

V 
n n 

u n=O 

(3.39) 

Substituting the recurrence relations for Jacobi polynomials, (A.7), into this result, one 
immediately obtains 

Hww = n 
3(n + l),i. hww _ 
2n+3 n' n 

‘cn + ‘),i 
-- 2n+l n-l 

(n = 0,2,4,. . .), 

Hww = -3(n+ 1)u’_l; 
n 2n+l n 

h:W = ‘;;;;‘& (n = 1,3,5,. . .). (3.40) 

For even n, we find that CL: which corresponds to the conformal spin n + 2 in the expansion 
for the twist 2 distribution amplitude gives rise to Hrw and HF+y which corresponds to the 
conformal spin n + 3/2 and n + 5/2, respectively. Likewise for odd n, a: gives rise to hTW 
and hr+y. These values of the conformal spin do not match the expansion in Eqs. (3.30) and 
(3.31). This is, however, not a contradiction since Wandzura-Wilczek terms are in fact not 
intrinsic twist 3 distributions, but correspond to matrix elements of twist 2 operators over 
,o mesons with different (longitudinal) polarization. To relate matrix elements of conformal 
operators over longitudinal and transverse p mesons, one has to perform a spin rotation (in 
the p meson rest frame) which does not commute with the generators of collinear conformal 
group. As shown in App. B, this rotation gives rise to the shift in conformal spin and 
exactly explains the mismatch appearing in Eq. (3.40). Therefore, the conformal symmetry 
is realized in Wandzura-Wilczek contributions as well, but to see this one has to supplement 
the conformal classification of operators by conformal transformation properties of the meson 
states. 

The three-particle contributions Hi and hi of (3.36) can be treated similarly. From 
the solutions for hfyg(u) and h(‘)’ ,, (u) in Sec. 3.1 we obtain the corresponding auxiliary 
amplitudes: 

htlg = CT jj - 
3P I( J 0 
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u &)K(V) 
- + J,' dv?) - -& s," dad J," dau-$a)] , 

a 
(3.42) 

where og = 1 - ad - cr’,, and 

(3.43) 

Substitution of the conformal expansion (3.35) into (3.43) yields 

K(u) = 18Ouu E LI;~ 
k! Z! (-1)” k-l 

’ (k+Z+2)! (k+l+3) pgJ2(s) + Pk!$l CC)) 7 (3.44) 
k,l=O 

where we have used Eq. (A.15) to perform the integration. The final integration involving 
K(v) on the right-hand side of (3.41) and (3.42) can be done similarly to (3.39) by using 
(A.3): 

- J y&) K(v) l K(v) 00 
0 

T+ dv-= J T k! l! (-l)“+l 
U a 

180 kgouk,l (k + 1 + 3)! k :;: 4pi:;~3(~) + pi!:;!2 K)) Y 

(3.45) 
and the last term of (3.41) and (3.42) can be integrated using (A.16): 

(3.46) 
Substituting (3.45) and (3.46) into (3.41), (3.42), and using the identities (A.5)-(A.7), we 
find 

n-2 k!(n - k - 2)!(k + 2) 
Hi = 180[& c 

(n+2)! (-1)n-kui,n-k-2] (n = 3,4,5,. . .), (3.47) 
k=O 

h; = -180$ c 
n-2 k!(n - k - 2)!(k -I- 2) (-l)n-k T 

(n + 2)! 
W{k,n-k-2) 

k=O 
(n = 2,3,4 - - ->, (3.48) 

while HOg = HF = Hi = h,9 = hy = 0. Here we introduced the following quantities: 

w&--w :k 

2 ’ 
(3.49) 

(3.50) 

We find that the coefficients w~T,~ with fixed k + I = n - 2, which correspond to the conformal 
spin j = n + 3/2, all contribute to Hi and hi corresponding to the same conformal spin 
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j = n + 312, a s anticipated. For later convenience, we give the lowest order coefficients 
(3.47) and (3.48) explicitly: 

l5 T T Hi’ = $3pwp,o~ - - -7o<& Hi = <;w;,~], H: = C; (;‘$,oj - ;w;,l~) 9 * . -9 (3.51) 

where we substitute w$ i1 = 28/3, which follows from the normalization condition (2.29). 
From (3.36), (3.40),’ and (3.47) it follows that the two lowest coefficients Ho and HI are 

completely determined by the value of a: = 1, which results in Ho = 1 and HI = -2. It 
is easy to see that these values for HO and HI ensure Ji du hfp (u) = s,’ du h:;‘(u) = 1 and 

therefore, the normalization condition for 41(u) ensures correct normalization of h;;)(u) and 

hi%). 
” To summarize, we have demonstrated that the equations of motion that relate different 

twist 3 operators can be solved order by order in the conformal expansion. In other words, 
equations of motion impose ‘Lhorizontal” relations between operators of the same conformal 
spin and do not involve other spins. This picture is somewhat complicated by the Wandzura- 
Wilczek contributions of the operators of lower (leading) twist which have a more peculiar 
structure. The explicit relations derived above can be made somewhat more compact by 
assuming G-parity invariance. In this case ai = 0 for odd n, w& = -w&, H, = hi&, 
and h, = 0. As mentioned above, the G-parity violating terms are only relevant for SU(3) 
breaking corrections in the distribution amplitudes of K* mesons. 

3.3 Renormalization and scale-dependence 

The scale-dependence of the chiral-odd distribution amplitudes $~(u, p”), h6t)(u, p2) and 

hfr)(u, p2) is governed by the renormalization group (RG) equation for the relevant nonlocal 
light-cone operators appearing in the definitions (2.17), (2.18), and (2.26). Unlike inclusive 
processes, operators involving total derivatives have to be taken into account since they 
contribute to nonforward matrix elements, and this leads to additional operator mixing. 

For example, consider the set of local operators ii(0)(~.)n-kal.(8.)kd(O) (k = 0, 1,2,. . .), 
which contribute to the n-th moment of the twist 2 distribution amplitude c$~(u, p”). These 
operators differ by total derivatives and all mix with each other under renormalization; 
to calculate the scale-dependence, one has to find the eigenvalues and eigenvectors of the 
corresponding anomalous dimension matrix. 

As is well known [15, 16, 181, conformal expansion provides the solution to this problem. 
Analysis based on the anomalous Ward identities for the dilatation and special conformal 
transformation (which are members of the conformal group) shows [18] that, to leading 
logarithmic accuracy, the conformal operators with different conformal spin do not mix 
with each other and thus diagonalize the anomalous dimension matrix. As a result, by 
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employing a conformal operator basis we do not encounter any additional operator mixing 
compared to inclusive processes. The relevant anomalous dimensions, which correspond 
to the eigenvalues of the anomalous dimension matrix, can be extracted directly from the 
results for renormalization of the corresponding parton distribution functions. In particular, 
the one-loop anomalous dimensions for hi:) (u, p2) and hf;) (u, p”) are the same as for the 
chiral-odd parton distribution functions [21, 22, 23, 241 as will be shown in the following. 

Our main task in this section is to reveal the explicit operator content of the conformal 
operators, corresponding to particular coefficients in the conformal expansions (3.32), (3.33), 
(3.25), and (3.35). W e g ive a one-to-one correspondence between the conformal basis and the 
basis used in the inclusive case. This allows us to determine the anomalous dimensions of the 
conformal operators and to find the evolution of the distribution amplitudes h:/)(u, p2) and 

h::)(u, cl”) through the conformal expansion. We will work out this program for arbitrary 
conformal spin. 

One complication is that the conformal operator basis for the higher twist operators is 
degenerate (see (3.35)) and the mixing matrix becomes only block-diagonal instead of being 
fully diagonalized like in leading twist. Consequently, the conformal expansion for three- 
particle contributions to h/;)(u, p2) and h[;)(u, 1-1”) does not resolve possible mixing between 
components with the same conformal spin. This is similar to mixing of the many quark-gluon 
correlation operators for the corresponding twist 3 parton distribution functions [21, 22, 231. 
It has been shown recently [25, 261, however, that an important simplification occurs in the 
limit of a large number of colors or of large spin (moment of parton distribution function). In 
these limits all complicated mixing disappears and the twist 3 parton distribution functions 
obey simple DGLAP-type evolution. We will demonstrate that the twist 3 distribution 
amplitudes obey a similar pattern. 

Let us start with the Wandzura-Wilczek terms hf/)ww(u,p2) and hf;)WW(u,p2) (see 
(3.32), (3.33), and (3.36)). The coefficients Hrw and hrW in their conformal expansions 
have been expressed by ai of (3.25) as shown in (3.40). Therefore, the scale-dependence of 
ai, i.e. of the twist 2 amplitude ~I(u, cl”), completely determines that of hf;)WW(u, /-I”) and 

h[;)WW(u,p2). Prom (3.25) d th an or ogonality relations of Gegenbauer polynomials [19], we 
obtain 

db2) = 
2(2n + 3) ’ 

3(n + l)(n + 2) J 0 
du C;‘“(t)du(u, ~1~). (3.53) 

Substituting (2.17) into the right-hand side of (3.53) gives 

(j-y) (p2) = i 2(2n + 3, 1 3(n + l)(n + 2) (p . .~)~+l Kvx(0; P”W(P, 9 (3.54) 

with 

n&; 1-12) = (ia.)n a(s)eyf7,.c;/2 (3.55) 

where the local operator on the right-hand side is renormalized at p2, E= 3 -5, and acl 
is the total derivative (3.3). sZk(~, p2) is the conformal operator of conformal spin j = n + 2 
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[16, 1813. Therefore, it is RG covariant to leading logarithmic accuracy and satisfies the RG 
equation: 

fl;t-(? P2> = 0, (3.56) 

where 7; is the one-loop anomalous dimension of the operator Rk. To establish a formal 
connection with the results given in the literature, it is convenient to consider the case 
where flk is diagonal in quark flavour corresponding to the flavour matrices As, As, and to 
take the forward matrix element of (3.56) over the nucleon state IN(P, S)). Because the 
total derivatives drop out in this matrix element, (3.56) reduces to the RG equation for 
(N(P, S)]$(O)al. (iD.)” $(O) IN(P, S)), which gives the n-th moment of the nucleon parton 
distribution function hl(x, p2) of (2.13). By matching with the results for renormalization 
of hl(z, p2) [24], we obtain 7: as 

r,’ = ~CF 
( 

1 
y!(n + 1) + 7~ - 3 + - 

4 > n+l ’ 

where $(n + 1) = C$=, l/k - 3% is the digamma function, 3% is the Euler constant, and 
CF = (IV: - 1)/2N,. From (3.54)-(3.57), we obtain 

(f;d) (Q2> = &‘lb (&?a;) (p”), (3.58) 

where L = Q,(Q~)/Q,(~‘) and b = (llN,-2Nf)/3. Combined with (3.32), (3.33) and (3.40), 
this result gives the p2-dependence of hf;jww (u, p2) and h;:)ww(u, p2) and also determines 
evolution of the twist 2 distribution amplitude ~I(u, p-I”> of (3.25). We note that (3.58) for 
n = 0 gives the scale-dependence of the tensor decay constant j; as 

f,T(Q2) = LCF’b.f;(~2), (3.59) 

because at = 1. 
The three-particle contributions hf:)‘(u, p”) and hf:)g(u, p2) can be treated in a similar 

manner, although the discussion becomes more complicated because one has to deal with 
a degenerate representation of the conformal group (see (3.32), (3.33) and (3.36)). The 
relevant expansion coefficients Hi and h$ are expressed by wj$ in (3.35) and shown in (3.47) 
and (3.48). Thus the first step is to demonstrate that w& are given by matrix elements of 
the local conformal operators derived in [18]. Using (3.35) and the orthogonality relations 
(A.13) for the Appell polynomials, we obtain 

31n principle, one can construct a tower of conformal operators (a.)mni (m = 0, 1, . . .) with the same 
conformal spin, but with the different “third component” of it. 
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for k = O,l, . . . , n - 2, and n = 2,3,. . . Making use of 

(Olti(tz)d’.[tz, vz]gG,.(vz)[vx, wz]d(wz)Ip-(P, A)) = 

= (p . Z)(e(4 . r)f3Tpmp J 2>& e-ip.r(tol,+zucrd+vcrg)7(~), (3.61) 

which is equivalent to (2.26), the left-hand side of (3.60) gives 

1 1 
f3Tpmp (ecx) - z)(p . z)“-l 

(“lArn-k-2(0) IP-(p, x>>, 
9 

with 

+W’.gGu.(O)d(g) , 
z=y=o 

(3.62) 

(3.63) 

where the covariant derivatives DF and DE act on the coordinates x and y, respectively. 

nz,n-k-2 (k = OJ,. . ., n - 2) are the twist 3 conformal operators of spin j = n + 3/2, 
forming a degenerate basis for three-particle representation [18].4 Inverting the matrix 
IV&‘) in (3.60), we obtain 

f Gw&-k--2 
N,T(-l)k 

= gok!(n _ k _ 2)! (“l@~,n-k-2(o)IP-(p, x>>, 

where NT is the dimensionless and scale-independent constant: 

NT ~ 2”-l(n + 1)(&t + I)!! 
n m,(e(x) . z)(p - ~)~-l ’ 

(3.65) 

(3.64) 

The numerical factor in front of the matrix element (3.64) is put for later convenience. The 
operators @&-k-2 are given by linear combinations of AEn-T-2 (T = 0, 1, . . . , n - 2) and 
therefore have conformal spin j = n + 3/2. 

The second step is to determine the explicit form of the relevant conformal operator 
@&.&.2. For the few lowest conformal spins, it is easy to express @&&-2 as a linear 
combination of hTnmTm2 using (3.60)-(3.63), but the procedure becomes more complicated 
for higher conformal spins. Using orthogonality relations for the Appell polynomials, (A.14), 
it proves possible, however, to determine @&..2 for general n up to total derivatives. 

J ~~ akan-k-2 
-du T(a) = 

360(-l)“k!(n - k - 2)! 
= WL-k-2 2n+l(n + 1)(2n + I)!! + (terms involving ~lfr+,.~l~~~) 

1 
= f3Tpmp(e(A) . 2) (p - z)“-l 

(Oju(0)(i~.)n-k-2c+‘.gGv.(O)(i~.)kd(O)~p-(P, A)), (3.66) 

40ne can generate a tower of conformal operators with a different “third component” of conformal spin 
by acting repeatedly with 8. on (3.63). 
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where the last line is obtained by substituting (3.61) into the left-hand side. From (3.60)- 
(3.63) it follows that $,-k;-2 are given by the matrix elements of the operators of dimension 
n + 3. This implies that “(terms involving w?~-~-~]~<~)” corresponds to matrix elements 
of operators involving total derivatives, which are given by linear combinations of terms 
N (tt)n-T A;,-,-, (k = O,l,. . . ,T - 2; r = 2,3,. . . 
and (3.66), that 

, n - 1). Thus we conclude, from (3.64) 

@&-&2(O) = ti(0)(-i~.)n-k-20v.gG,.(O)(i~.)kd(O) + (total derivatives). (3.67) 

The operators @l,n-k-2 (k = 0, 1,. . . , n - 2) have the same conformal spin and may mix 
with each other, although they do not mix with O&I-2 for n # r. To write down the 
corresponding RG equation, it is convenient to introduce combinations that are even and 
odd under the substitution k + n - k - 2: 

where 

Sf - @&-k-2 * %-k-2,k 
n;k 2 

(k = 0, 1, . . . , K;), 

K+= [ 14 1 -1 
’ Kc, 

= 
n 2 

[ - n-l I 
2 

-1. 

(3.68) 

(3.69) 

It is straightforward to see that Sn+;k and S$ possess opposite “parity” under the G-parity 
transformation. Therefore, these two sets of the operators do not mix with each other. The 
RG equations are given by 

$ + p(g); s&(0; cl”) = -2 5 (rIf*)k,l $$‘; p”)’ l=O (3.70) 

where the one-loop anomalous dimension I, T+ (FE-) is a [n/2] x [n/2] ([(n-1)/2] x [(n-1)/2]) 
matrix, describing the mixing. Note that the number of independent operators and thus 
the size of the mixing matrix increase with conformal spin. 

In order to determine the anomalous dimension matrices I’:* in (3.70) we make contact 
with inclusive processes. Similarly to the discussion of the Wandzura-Wilczek part, we 
consider the case where the operators Sn’;k are flavour-diagonal and take the forward matrix 
element of (3.70) in between nucleon states I N(P, S)). The total derivatives in (3.67) drop 
out, and (3.70) reduces to the RG equations for 

(N(P, S)I$(iiS .)n-k-2au.gGu.(i~ .)“pG f (k + n - k - 2)IN(P, S)), 

familiar from studies of the evolution of the n-th moment of the nucleon parton distributions 
e(x, cl”) and hL(x7p2) defined in (2.14) and (2.13). It is straightforward to see that these 
operators for the upper and lower sign, which are even and odd under k + n - k - 2, 
coincide exactly with the basis employed in renormalizing the parton distribution functions 
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e(x,p’) [22] and hL(x,p’) [21], respectively.5 Matching with these results, we obtain 

( > 
rT+ n W = -&+2,1+2 (k, 1 = 0’1,. . . , K,‘), (3.71) 

(k, 1 = 0’1,. . . 7 K,), (3.72) 

where Yi,j and Xi,j are the mixing matrices in the notation of [22] and [21], i.e. are given by 
Eqs. (3.12)-(3.16) of [22] and Eqs. (3.14)-(3.16) of [21], respectively. By solving (3.70)’ we 
obtain 

s,f;,(o; Q2) = 5 (Lr’*ib)k,l s,‘;,(o; /wk2), 
l=O 

(3.73) 

and the matrix elements of sn’;k are related to &&-k-2] and &+,-k-2) of (3.49) and (3.50) 
as (see (3.64) and (3.68)) 

f ?pwi,n-k-21 >( ) p2 = 

N,T(-I)“‘-k+l 
180k!(n - k - 2)! (“ls,rk(o; ~“)Idp7 8)’ (3.74) 

f ?pW$c,n-k-2) >( ) p2 = N,T(--l)n-k 
180k!(n - k - 2)! 

(ol$..(o; ,eh2)lp-(P, A)). (3.75) 

Here the upper (lower) superscript should be understood for n = 2,4,6,. . . (n = 3,5,7, . . .) 
on the right-hand side. The results (3.71)-(3.75), combined with (3.32), (3.33), (3.47), 
(3.48) and (3.59) g ive the p2-dependence of the three-particle contributions h[/)g(u7 p2) and 

hf:)g(u7 cl”) (recall that $ in (3.47) and (3.48) is given by (3.8)). The evolution of the 
three-particle twist 3 distribution amplitude 7(a) of (3.35) is thus specified completely. For 
the first few moments we obtain from (3.71)-(3.75)? 

f,T,(Q2) = ,+‘3c~+6cd/6bf;(p2) 
7 (3.76) 

(f$~$,~~) (Q2) = L(106CF+75CG)'30b ( &J;,oI) (P”) 7 (3.77) 

corresponding to n = 3’4’5. Here Cc = N,, and w$,rI = 2813 is substituted in (3.76) 
(see (3.51)). Substitution of (3.76)-(3.78) in (3.51) determines the scale dependence of Hz 
(n = 3’4’5). 

5For the case of the parton distribution hL(z, ,Q~), the relevant quark-antiquark-gluon operator has an 
additional iy:, inbetween the quark fields. The evolution of the corresponding operator is not affected by 
the insertion of iys [25]. 

61t is worth noting that the evolution of f3Tp~&~-~-~1 coincides exactly with that of the coefficients, 
appearing in the conformal expansion of the twist 3 three-particle distribution amplitude of the pion [7]. 
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The results in (3.71)-(3.78) illustrate a complicated mixing pattern characteristic for the 
higher twist operators. In particular, Hn(Q2) for n 2 5 (hi(Q2) for n 2 4) are not directly 
related to Hz(p2) (h$(p2)), in contrast to (3.58) for the twist 2 operator. 

There exist, however, two important limits, NC + 00 and n + 00, where the three- 
particle coefficients Hi and h9, obey a simple evolution equation. The mathematical reason 
for this simplification is the same as for the similar simplification observed for the nucleon 
parton distributions hL(x, p2) and e(x, p2) in [25, 22, 231. To show this, it is convenient to 
express Hi and hi directly by matrix elements of s,$., by substituting (3.74) and (3.75) 
into (3.47) and (3.48). We find 

(fFH:) b”) = -m 
P 
(2 1), 2 (l - 2r;;)) (oIs~,(o;~2)Ip-(p,~)), 

* k-0 

(fFh:) (p”) = -m 
P 
$ l)f 5 (l - f’k,,,) (“Is~k(o;~2)jP-(P,x)), 

’ k-0 

for n = 2’4’6,. . .) and 

(fTh:) (p2) = -m 
P 

(5 1)’ 5 (l - 2a=;)) (ols~,(o;~“)(p-(P,~)), 
’ k-0 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

for n = 3,5,7,. . . Setting p2 = Q2 in (3.79)-(3.82) and substituting (3.73) into them, we 
would reproduce the complicated mixing discussed above. However, in the large NC limit, 
that is, neglecting terms 0(1/N:) in the anomalous dimension matrices I’:* of (3.71) and 
(3.72)’ the following exact relations have been derived [25, 221: 

(n = 3’5’7,. . .), (3.83) 

1 - $+-$) (r:+)k,l = (1 - f6,&) r,” (n= 27476~...)7 (3e84) 

and 

l- 2F:2?) (I’T-)k,l= (l- 2zf22))$- (n=3,4,5,6,...), (3.85) 

where 

1 1 
i(n+1)+yE-;-2(n+lj 7 (3.86) 
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rT- n = 2X ‘$(n+ 1) 1 3 +yE - 4 + 2cn+ l> . 

As a consequence of these relations, we obtain 

(f;H$ (Q2) = LyT’/b (f;H$ (p”), (3.88) 

(f;h:) (Q”) = 6*” (fp’hg> (p”), (3.89) 

where the upper (lower) superscript should be understood for n = 2,4,6,. . . (n = 3’5’7, . . .) 
on the right-hand side. Therefore, in the large N, limit, Hi and ha obey simple DGLAP-type 
evolution equations similarly to the twist 2 case (3.58); they are governed by the anomalous 
dimensions given in analytic form in (3.86) and (3.87). We note that these anomalous 
dimensions correspond to the lowest eigenvalues of the mixing matrices I’:* [25, 221. 

The phenomenon leading to (3.88) and (3.89) can be stated as decoupling of the three- 
particle operators, which correspond to the higher eigenvalues of the mixing matrix, from 
the RG equation. The same decoupling is observed at large n for arbitrary values of N, 
[25, 231. In this case, we obtain (3.83)-(3.85) with the anomalous dimensions (3.86) and 
(3.87) shifted by 

\ I 

3;, T* + 7:’ + (4CF - 2NJ Inn + 3% - i) . 

With this modification of the anomalous dimensions, the results (3.88) and (3.89) are valid 
to 0 ((l/N:) ln(n)/n) accuracy. 

These simplifications provide useful insight both into the model-building of the distri- 
bution amplitudes, and a convenient description of their scale-dependence: In the large 
NC-limit, each conformal partial wave of the three-particle contributions is described by a 
single nonperturbative parameter, as demonstrated in (3.88) and (3.89). This is remarkable 
because in general each conformal spin involves many independent nonperturbative matrix 
elements (see (3.79)-(3.82)). This point can be made stronger with the full account for 
effects subleading in N, but for large conformal spin j, as shown in (3.90). Furthermore, 
(3.90) proves the conjecture made in [lo, 71 that the lowest anomalous dimension of the 
twist 3 three-particle operators is increasing as N lnj, similarly to the twist 2 case (3.57). 
This ensures convergence of the series in the Appell polynomials at least for high energy 
scales. Combined with the fact that the distribution amplitudes can be resolved order by 
order in the conformal spin, the truncation of the conformal expansion at some low order 
provides a useful and consistent approximation of the full amplitude. 

To summarize, we have worked out the scale dependence of chiral-odd twist 3 distri- 
bution amplitudes h\;)(u, r-l”) and h:;)(u, p”) in the leading logarithmic approximation. In 

the two limits, N, + 00 and n + 00, the evolution of h\/)(u, p2) and h[:)(u7p2) is dras- 
tically simplified and reduces to a DGLAP-type equation. The discussion in this section 
completes the results for the chiral-odd distribution amplitudes up to twist 3, which can be 
predicted based on the QCD constraints from equations of motion, conformal invariance, 
and renormalization group invariance. 
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4 Chiral-even Distribution Amplitudes 

The analysis in the previous section can directly be extended to the chiral-even distribution 
amplitudes. In Sec. 4.1 we derive the constraint equations for g?‘(u) and g?‘(u) imposed 
by the QCD equations of motion, and identify the contribution to g?‘(u) and gy)(u) from 
the twist 2 distribution amplitudes 411(u) and 41(u) and the three-particle distribution 

amplitudes Y(cx) and A(a). In Sec. 4.2, we study the conformal expansion for 411(u), gy)(u) 

and g!‘(u). In Sec. 4.3, we work out the renormalization of g?‘(u) and g?‘(u), utilizing the 
fact that the conformal symmetry is preserved at one-loop level. Our presentation in this 
section will be brief, since the methods and the results are in parallel with those in Sec. 3. 

4.1 Equations of motion 

To derive the constraint relations among the chiral-even distribution amplitudes we again use 
operator identities (to twist 3 accuracy) for the nonlocal operators in (2.19) and (2.20) [lo]: 

E(x)y,[x, -x]d(-x) = I’ dt $ z(tx)$[tx, -tx]d(-tx) 
P 

-I’ dGt dm(tx)[tx, vx]g&,(vx)xV~y5[vx7 -tx]d(-tx) 

1 
-i dt J J 0 

-1 dv vE(tx)[tx, vx]gGp~(vx)xu[vx7 -tx]$d(-tx) 

- qwYp 1’ dt t xVdQ [a(tx)ypys[tx7 -tx]d(-tx)] 

’ + (mu - md)x’ J o dt ta(tx)a,,[tx, -tx]d(-tx), (4.1) 

and 

+$~~75[x, -x1+x) = I’ dt & a(tx)$y5[tx7 -tx]d(-tx) 
/J 

-ptlat dva(tx)[tx, vx]g~p,(vx)xu~[vx7 -tx]d(-tx) 

-i J J ‘dt t 
0 -t 

dv v a(tx)[tx, vx]gGp,Y(vx)xV[vx, -tx]$y5d(-tx) 

- ~qwffp 1’ dt t x”dQ [a(tx)yB[tx7 -tx]d(-tx)] 

’ + (mu + md)x’ J o dtt+++yc,[tx, -tx]d(-tx), (4.2) 

28 



where 8, is the total derivative defined in (3.3), and the terms proportional to quark masses 
originate from the use of QCD equation of motion. By sandwiching these equations between 
the vacuum and the p meson state, and taking the light-cone limit x + z, one obtains the 
following relations among the distribution amplitudes: 

J’ du ei9”gy)(u) = J’ 0 dt 1’ 0 du eitEPz$y (u) - [~$,(pz)~ 1 t2dt 0 1: dw A(w, tpz) 

- <.$,(Pz)~ i1 dt t2 1: dw w V(w, tpz) - i(pz)’ (1 - 8+) 1’ dt t2 i1 du eittp”&)(u) 

- iz-(pz) 1’ dt t 1’ dueittPZ$l(u), 

and 

f (1 - g+) 1’ du@“g~‘(u) = 1’ dt t Jo’ du eit9’gy)(u) 

+ i<$(pz) 1’ dt t2 J_: dwV(w, tpz) + i<&(pz) 1’ dt t2 /_: dw wA(w, tpz) 

- g+ 
J s 

’ dt t 
0 0 

’ du eittPa$l(u), (4.4 
where V(w, tpz) and A(w, tpz) are defined in (2.27) and we introduced the notations 

In order to solve these equations, we expand them in powers of pz and 
relations among the moments of distribution amplitudes: 

(4.5) 

transform them into 

(n + 1pp = Mll + n(n - l) 
n 2 (1 - Z+) ME2 + $,~(TI - 1) ]dw An-z(w) 

and 

-1 

+ @(TX - 1) jdw w Vn-2(w) - &IM,I_~, (4.6) 
-1 

z+) n/r?) = jj/ft) +<&n jduV.-l(w) +<$n]dwwAn-l(w) -Z+M,I, 
-1 -1 

WY 

29 



where Un(v) and An( w are defined similarly to (3.10) from Y(Q) and A(a), and we intro- ) 
duced the shorthand notations Mt)y(‘) E J~du~ng~)‘(“). Fr om these equations, one obtains 
a recurrence relation for Mp) as 

(1 - g+) (@I + 2)(7x + l)Mp) - n(n - l)M;,) = 

= 2M; + 2<; I -1 dw [n(n + l)Vn-l(w) + n(n - l)wVn-2(w)] 

+ 2crp I -1 dw [n(n + l)WAn-l(W) + n(n - 1)&-2(W)] 

- 2(n + l)g+Mi - 2nkM,$-,. (4.8) 

This equation is similar to (3.14) for h;;‘( u , and can be cast into the form of a differential ) 
equation as 

where 

(1 - X+) uti(&))“(U) = -Q(u), (4.9) 

w = Wll(4 + ~+ML(u) + wL(4 

0 0 
1 - Q - o, 

1 d -- 
1 -ad -a, ad dad 

(4.10) 
0 0 

From this equation, one immediately obtains the solution for &j(u) as 

(l-g+)&‘(u) =.~dw~u(w~+ujdw~~(w). 
0 ?A 

Combining this result with (4.7), one obtains the solution for g?‘(u) as 

(4.11) 

(4.12) 



Eqs. (4.11) and (4.12) again allow the decomposition of gy)(u) and gf)(u) into several terms 
according to the various source terms: 

gtJ)(u) = gpww (u) + 9!“‘“(u) + gyyu) 7 (4.13) 

9!“‘(u) = gyjww (u) + g!“‘“(u) + g!“‘“(u) 7 (4.14) 

where gy)ww(u) and gfjww (u) denotes the contribution from the twist 2 distribution am- 
plitudes (Wandzura-Wilczek part), g?‘“(u) and gt’“(u) are the contribution from the three- 
particle distribution amplitudes Y and A. In particular, we get 

gyyu) = ; [lU dw $b,,(w) + J,‘dw $4,(w)] 7 

gf+‘w(u) = 2iil’dw $5,,(w) + 22~1~ dv &(u,. 
U 

(4.15) 

(4.16) 

4.2 Conformal expansion 

The conformal expansion for the chiral-even distribution amplitude can be performed sim- 
ilarly to the case for the chiral-odd ones in Sec. 3.2. In the following, we restrict ourselves 
to the massless case. 

For completeness, we start with the expansion for the twist 2 distribution amplitude 
411(u). It reads 

411(u) = 624,~ ngo &?” (5) > (4.17) 

where Ci/“(Q is the Gegenbauer polynomial, and each term corresponds to the conformal 
spin n + 2. We note oi = 1 due to the normalization condition (2.23). Because of the 
G-parity invariance of the p meson distribution amplitude (likewise for other mesons such 
as w, 4), it follows that ~11 = 0 for n = 1,3,5,. . . in (4.17). In Sec. 5, however, we shall 
treat an application to the K* distribution amplitude with explicit SU(3) breaking due to 
the quark masses. With this in mind, we keep all terms CA/ in (4.17). For the same reason, 
we shall work out the conformal expansion for gy’, gy’, Y(a) and A(a) by keeping both 
G-parity invariant and G-parity violating terms in the following. 

To carry out the conformal expansion for g?‘(u) and gy’ (u), we again introduce a set 
of auxiliary amplitudes gtJ(u) and gJt(u) [20] defined by 

(Ol~(z)~.r,‘r*[z, -z]d(-z)lp-(P, A)) = -fpmpeyL I 0 
’ due@PZgtl(u), (4.18) 

(ol~(z)r+$r.[z, -z]d(-z)Jp-(P, A)) = -fpmpeyi I 
’ due”tp”gJt(u), (4.19) 

0 
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(4.20) 

(4.21) 

(4.22) 

(4.23) 

Substituting these expansions in (4.20) and (4.21), one obtains 

9!“‘(u) = C (Gn - Gn-1) Ci”(<) + C (gn - gn-1) Ci’“((), (4.24) 
n=0,2,4,... n=1,3,5,... 

gt’ (u) = 8uii c 
Gn - &+I 

(n + l)(n + 2) 
q”(E) + c 

n=0,2,4,... n=1,3,5,... 

where G, and gn represent, respectively, G-parity invariant and G-parity violating compo- 
nents in the expansion defined by 

G 
n 

~ $+ (-l)ng:t 
2 9 

for n = 0, 1,2, . . ., and G-r = g-r = 0 is implied. Note the difference between {Gn, gn} and 
{ Hn, hn} (see (3.34)) owing to the chiral-even or -odd nature of the distribution amplitudes. 

The conformal expansion for the three-particle distribution amplitudes V(a) and A(a) 
can be written down similarly to (3.35): 

V(ad, a,, 1 - ad - a,) = 360a,ja,(l - ad - &,)2 g w$k,&di au), 
k&O 

4 ad, Cl!,, 1 - ad - Cl!,) = 36oa&x,(l - ad - a;)2 2 W&Jk,l(ad, au). (4.27) 
k,l=O 

The G-parity invariance of the three-particle distribution amplitudes leads to w& = -w& 
and w& = “$ As was stated at the begining of this subsection, we shall not assume 
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which are related to gy’ (u) and gy’ (u) as 

gyu> = g?‘(u) + 1dg!“)(u) 
4du 7 

gJf(u) = 9!“‘(u) - ldg!“‘(u) 
4du ’ 

The conformal expansion for St&(u) and g$t (u) is given by 

gJ+(u) = 2u E gpfqg. 
n=O 

Sn E 
g;J - (-l)“gif 

2 7 (4.26) 



this symmetry in the following. We also note the normalization condition in (2.29) gives 
w;,~] = 28/3 and wo,o - . A - 1 The conformal spin for each term in the above expansion is 
equal to j = Ic + 1 + 7/2, and the preservation of the conformal invariance at one-loop level 
prevents mixing among the contribution with different n = k + 1. 

Our next task is to identify the twist 2 (Wandzura-Wilczek) and the three-particle con- 
tibutions to G, and gn. We decompose 

G, = GrW + GE; Sn = 9,“” + ili7 (4.28) 

and consider the Wandzura-Wilczek contribution first. Substituting (4.15) and (4.16) into 
(4.20) and (4.21) and using the formulae (A.l2), (A.3), (A.8) and (A.9), we obtain the 
Wandzura-Wilczek contribution for gtJ(u) and gJt(u) as 

gtlww u o=J ’ dw4ii(“) 
U 21 

= 2li5/ 
n=O 1 

3(n + 2, ppy~) _ 
2(2n + 3) 2”:;;=$ p!::)(o] 9 

gltww u o=J u,+idw) 
0 TJ 

= 2uf5~ 
[ 

3(n + 2, pp”(() + 
n=O 2(2n + 3) ;;;;1-3, P!“,:‘m] - 

These give rise to GrW and gyw in (4.28) as 

Gww _ 3(n + 2, ull ww- -3n 
- n 2(2n+ 3) n’ gn - 2(2n+ l)“-” (n = 0,2,4. . .) 

(4.29) 

(4.30) 

Gww = 
-3n 

n 
ull-l, 

2(2n + 1) n 
gww = SCn + 2) (J 

n 2(2n+ 3) n’ 
(n = 1,3,5.. .) (4.31) 

For even n, we find that u/ which corresponds to the conformal spin n + 2 in the expansion 
for the twist 2 distribution amplitude gives rise to GrW and Gr+y which corresponds to the 
conformal spin n + 3/2 and n + 5/2, respectively. Likewise for odd n, a/ gives rise to grw 

ww and Qn+l * This is the same pattern as observed for the chiral-odd distribution amplitudes 
and is discussed in App. B. 

From the solution for g?)(u) and g?‘(u) in (4.11) and (4.12) we can identify the three- 
particle contribution to the auxiliary amplitude as 

gt-lg(u) = [; {J,’ dw iH(w) + M(u)} + [& {J: dw AL(w) + N(u)}, (4.32) 

dtg(u) = C; { 1’ dw +(u) + M(u)} + <& {i” dw ;L(w) + N(u)} , (4.33) 
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where the functions H(u), L(u), M(u), N(u) are defined as 

M(u) = $- i” dad j)+V(cu), (4.36) 

(4.34) 

(4.35) 

(4.37) 

with a, = l-CX~-CL~. The calculation of (4.32) and (4.33) can be carried out similarly 
to the chiral-odd distribution amplitudes in Sec. 3, using the explicit form for V(g) and 
d(a) in (4.27). First H(u), L(u), M(u) and N(u) in (4.34)-(4.37) can be easily obtained by 
using (A.15)-(A.18). The integration of H(u) and L(u) in (4.32) and (4.33) can be done by 
(A.3). Application of (A.8) and (A.9) to the results of those integrations and N(u), and the 
use of (A.5) and (A.6) for M(u) yields the anticipated form for the result. One eventually 
obtains 

X (n - (2k -I- 2 - n)) (-<&w[n-k-2 + <Gwtn-k-2) 7 (4.38) 

gyu) = 90(1+ S) E P;O”‘([) ;z; “!‘;,;;);(;)!&l’” 
n=2 

x jn + (2k + 2 - n>) (cgwgn-k-2 + <$wkqn-k-2) 9 (4.39) 

where we kept the form (2k + 2 - n) in {. . .} which is anti-symmetric under the interchange 
k t) n - k - 2. From this equation we get Gi = GT = go9 = gf = 0, and 

n-2 k!(n - k - 2)!(-l)“+” goc kzo (n + l)!(n + 1) 
{ (2k + 2 - n)czwi,n-k-2] + nG$hJ&n-k-2~ > 9 

G; = 
(n = 2,4,6. . .) 

n-2 Ic!cn - Ic - 2)!(-1)n+k 
got 

kc0 (n+l)!(n+l) 

I (n = 3,5,7. . .) 
(4.40) 
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n-2 Ic@ - Ic - 2)!(-1)n+k+1 got (n + l)!(n + 1) 
&fwr”k 

P ,n 
-k-2) + (2k + 2 _ 

k=O 

9: = ( 
(n = 2,4,6,. . .) 

ne2 k!(n - k - 2)!(-l)n+k+l 
goc { (2k + 2 - n)cGwb,n-k-2) + n$wi,n-k-2] > 7 

k=O (n + l)!(n + 1) 

I (n = 3,5,7,. . .) 
(4.41) 

where we introduced the anti-symmetric and symmetric components of wzlA defined by 

(4.42) 

One finds here again that G, and gn which correspond to the conformal spin j = 3/2 + n 
receives contributions from the coefficients wzlA with a fixed k + I = n - 2 which have the 
same conformal spin j = 3/2 + n. The first terms in (4.40) and (4.41) read 

G; = lO$w~ = lo<&, 

g; = -1o&&, 939 = ; (3&$,1] - @&lJ ’ 

where we have used the normalization condition for d(a) and V(a), w& = 1 and w;,~] = 

28/3. We also note that (4.31) for n = 0,l together with the conditions ul = 1, Gi = Gy = 0 
determines the first two coefficients of G, as Go = 1, Gi = -l/2, which gives consistent 
normalization Jt du gt’(u) = 1 and 1; dug?)(u) = 1 through (4.24) and (4.25). We finally 
remind that the G-parity invariance of the three-particle distribution amplitudes imposes 

W&,1) = , 0 and w$ I1 = 0, leading to gi = 0 and Gg = gA$g. 

4.3 Renormalization and scale-dependence 

In this subsection, we discuss the renormalization of the chiral-even distribution ampli- 
tudes, $II(U, ,Q’), gf’(u, cl”) and gf’(u, ,!A~), utilizing the conformal expansions derived in the 
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previous subsection. 
For completeness we start our discussion with the renormalization of the twist 2 dis- 

tribution amplitude 411(u). From (4.1) and the orthogonality relations of the Gegenbauer 
polynomials [ 191, one obtains 

a” (p2) = 2(2n + 3) ’ n J 3(n+l)(n+2) 0 du C;‘2K) $11 (u, r-l”>. (4.45) 

Using (2.19) in the right-hand side of (4.45), we can express ui in terms of the conformal 
operator: 

a” (p2) = 
2(2n + 3) 

n 3f,m,(n + l)(n + 2)(e@) . z)(p . z)” 
w!$% P”> IF P, 4) (4.46) 

with @(x; p”) = (ia.)” G(x)y.q2 (4.47) 

where the local operator in the right-hand side is renormalized at p2, i& 3 -5, and dP is 
the total derivative (3.3). s2l(x; p2) is th e conformal operator with conformal spin j = n + 2 
[lS]. The scale dependence of a!(~~) is well known [l, 21: 

(4.48) 

where L = CX’, (Q2)/a, (p2), b = (1 lN, - 2Nf)/3 and the anomalous dimension 7; for the 
conformal operator s2// is given by 

7!=4C~ $(n+2)+yE-!- 
( 

1 
4 ) 2(n + l)(n+ 2) * 

For n = 0, n! is reduced to a conserved vector current, and hence its anomalous dimension 
vanishes to all orders. Combined with the normalization condition for 411 (u), a! = 1, this is 
consistent with the fact that fp is scale independent. We thus omitted fp in both sides of 
(4.48) (compare with (3.58) and (3.59)). 

Next we proceed to discuss the renormalization of the twist 3 distribution amplitudes 
gy’(u, 1-1”) and gy’(u, 1-1”). As we saw in the previous subsections, they receive contributions 
from the twist 2 distribution amplitude (Wandzura-Wilczek parts), the three-particle distri- 
bution amplitudes and the terms proportional to the quark masses (see (4.13)-(4.16)). The 
scale-dependence of 411 (u, ,LJ”) discussed above completely determines that of gyjww (u, p2) 

and g1 (a)WW(u, r-l”) through th e relations (4.24), (4.25) and (4.31). 
To understand the scale dependence of the three-particle distribution amplitudes V(oJ 

and d(a), one needs to express wxlA in (4.27) in terms of the local conformal operators. 
Owing to the orthogonality relation (A.13) of the Appell polynomials with different k + 1, 
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wzlA can be expressed in terms of the matrix elements of the conformal operators with a 
definite conformal spin j = k + 1 + 7/2. As we saw in Sec. 3, it suffices to know the form of 
the conformal operators up to total derivatives for the renormalization. For this purpose, 
we recall from (2.24) and (2.25) 

(OIii(tz)y[tz, wz]g&(wz)[wz, wz]d(wz)Ip-(P, A)) 

(Ol~wY~ Y It i 5 z, W.&G&z) [wz, wz]d(wz) Ip- (P, 4) 

= hd-wly P (‘)( . z) f,$ / ~~e-ip’r(ta,+wcrd+vag)d(~). (4.51) 

To obtain the actual form of the conformal operators, we apply dnv2/Wmkm28wk on both 
sides of (4.50) and (4.51) and set t = w = w = 0. Using the integral formula for the Appell 
polynomial (A.14), one obtains 

(Olu(O)(i 5 .)“-“-“-y.g&(O)(i 2 .)kd(0)Ip(P, A)) 

= i f3~cL.p,eQpy 
n-k-2360(-l)nk!(n - k - 2)! 

2n+1(n + 1)(2n + l)!! 

+(terms with W&-l-2/r<n)] , (4.52) 

(Olii(O)(i 5 .)n-k-2y.iy5gGl.(0)(i 2 .)“d(O)lp(P, A)) 

360(-l)“k!(n - k - 2)! 
~p+i(~ + l)(zn + l)rr . . 

+(terms with W&-l-2[r<n)] . (4.53) 

It is easy to see by induction that wr;!1-21r<n in these equations are the matrix elements 
of the total derivatives of the lower conformal operators. Therefore we can identify the 
corresponding conformal operators for w~~.k-q as 

( f 
v v 
3pWk,n-k-2 

2 - 
>( ) I-1 - 

(-1)"Nn 

90k!(n - k - 2)! (“l@Fn-k-2(o; P”)IP-(P, A>>, v 

(f 
A A 2 - 
3pWk,n-k-2 p - >( ) 

(-1)“Nn 
(“lotn-k-2(o; P~)IP-(~, A>>, 90k!(n- k-2)! T 

(4.54) 

(4.55) 

where the conformal operators are now obtained up to total derivatives as 

@x,-k-z(O) E U(O)(-i b .)“-“-“r.Gl.(O)(i 5 .)‘“d(O) + (total derivatives), (4.56) 
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@$,-k-z(O) - U(O)(-i 5 .)n-k-2y.Gl.(0)(i 5 .)Iciygd(O) + (total derivatives), (4.57) 

and we introduced for convenience a dimensionless and scale independent normalization 
constant N, as 

N 
n 

= 2”-l(2n + l)!!(n + 1) 

&.dpelv P (4( .z)n-l ' 
(4.58) 

From Eqs. (4.54) and (4.55), 

(f~w&-k-2)(~2) b' 

we can obtain the scale-dependence of (f$d&+k-2)(p2) and 
working out the renormalization of {@~n-k-z, @j&-k-z} (k = 0, . . . , n- 

2) .7 If we define R$ = @K,++z f @K-&z& (k = O,l,. . .,/G: with IE,~ defined in (3.69)) 
and R;; = @;,+, F @&k-z k (k = 0,1 
tively, have G-barity ( -l)n+l 

,“‘7 Q, {R$, R(i) and {R$, R$& respec- 
and (-l)n and thus they do not mix with each other under 

renormalization. 
By inserting (4.54) and (4.55) into (4.40) and (4.41) and recalling the definition of cz 

from (4.5), one can express the contribution from the three-particle distribution amplitude 
to the two-particle distribution amplitudes ,!v@) in terms of the conformal operators: 

G3P2) = 
i 

n-2 

fpmp(n + l)!(n + 1) lo 

-Nn 

1 c(k + l)R,,(O; P’)b-(p, A>>, 
k=O 
n-2 

(n = 2,4,6,. . .), 

, fpmp(n + l)!(n + 1) lo 
1 c(n - k - l)Ri,k(O; p2)Ip-(P, A)), (n = 3,5,7,. . .), 
k=O 

(4.59) 

-Nn 
n-2 

&b2) = fprn&dn + l)!(n + ‘) 
(01 c(n - k - 1)R~,k(O; cl”)b% A>>, b = 2,4,6,. . .>, 

kzO 
Nn 

n-2 

fpmp(n + l)!(n + ‘) 
toI cck + l)R,k(o; p2)Idp, 8>, (12 = 3,5,7,. . .), 

ICE0 
(4.60) 

where the operators R:,k (k = 0, . . . , n - 2) are defined as 

R& = @[n-k-, f @Lmk-2,k F @kqn-k-2 + @t-k-,,,* (k = 0, 1,. . . , n - 2) (4.61) 

Here we note that {RL,,} and {R;,k} have opposite parity under G-parity transformations 
and constitute another operator basis which is equivalent to {Rx& Rt,$} and {R$, R$}, 
respectively, either of which has the same number of independent operators rcz + K; + 2 = 
n - 1. If we define the anomalous dimension matrix for { Rz,,} as I’;, the scale dependence 

Of Rn’,k is given by 

n-2 
R;,k(O; Q2) = c (Lr"b)k,l R,f,,l(O; p2)* 

l=O 

(4.62) 

‘Since Ok,-,-, and O&.,-, have the same conformal spin, they generally mix with each other under 
renormalization, even though they originate from different distribution amplitudes. 
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The renormalization for {R;,,} can be conveniently worked out by considering the for- 
ward matrix elements with respect to a spin l/2 target (say a quark) as was done in 
Sec. 3. In this case, the contribution from the total-derivative terms disappear and its 
matrix element (Rz,k) is reduced to (q(iD.)n-k-2y.Gl.(iD.)k$ f (k + n - k - 2)) + 
($(iD.)k~.Gl.(iD.)n-k-2Cy5~ q= (k + n - k - 2)). By now, renormalization of {R;,,} 
has been solved by several different approaches in the context of the Q2 evolution of the 
transverse spin structure function gz(x, Q2) [lo, 27, 281. In particular, {Ri,,} is exactly the 
operator basis used in [27] for the renormalization of gz(x, Q2). From the result in [27], I’: 
in (4.62) is obtained as 

( 1, r: kl= -al!,1+17 (k, 1 = 0, 1,. . . , n - 2) (4.63) 

where XF,:’ is given in Eqs. (15)-(17) of [27] with n + n-t 1. The explicit form of I; is not 
available in the literature, but can be obtained from the kernel given in [lo]. (Since R;,k 
does not contribute to the deep-inelastic scattering which is the charge conjugation even 
process, it has not been receiving attention up to now.) 

By using the basis {Ri,,} and {R;,k}, (4.54) and (4.55) can be rewritten as 

( f zwi,n-k-2] * f&w&n-k-2) >( ) 
(-1)“Nn 

p2 = 180k!(n _ k _ 2)! (“IR:,k(o; p2)Idp, A)>, (4.64) 

for the G-parity invariant components and 

for the G-parity violating components. In (4.64) and (4.65), upper and lower signs corre- 
spond to n = 2,4,6,. . . and n = 3,5,7,. . ., respectively. For illustration, we give here the 
explicit form of the scale dependence of the left hand side of (4.64) for n = 2,3,4 from 
(4.62): 

f,A,(Q”) = Lrc’bf;b2L r; = -$ + 3cG, 

+3cG, 
-- $G, 

2f$J[O,2] + 2f&Ji’o,2} Q2 
-f&&1 = Lr; lb 

-2f,v,qo,21 + 2f$qi,2) 

(4.66) 



where we have used woo - A - 1 and wi 11 = 28/3, and the anomalous dimensions l?;, r, can 
be obtained from the kernel given in’[lO].’ 

As one can see from this ih.WtratiOU, the p2 evolution of {W~,n_k-2],W~,n_k-2~} and 

{Wb,n-k-2), W$,n-k-2]) becomes extremely complicated for general n. However, as was the 
case for the chiral-odd distribution amplitude in Sec. 3, the p2-dependence of the three- 
particle contribution to the twist 3 two-particle distribution amplitudes, i.e. Gi(p2) and 
gi(p2), is greatly simplified in the large N, limit. It has been shown in [26] that the 
combination of Rz,k in (4.59) and (4.60) renormalize multiplicatively at N, + 00 to 0(1/N:) 
accuracy. We thus get in this limit 

G;(Q2) = LY"IbG;(p2), 

&(Q2) = L”‘b&(p2), 

with a common anomalous dimension 

(4.69) 

This 3;1. has been shown to be the lowest eigenvalue of I’; [26]. This reduction to the simple 
evolution equation (4.69) is equivalent to the fact that the coefficients of R:,k in (4.59) and 
(4.60) constitute the left eigenvector of I: with the eigenvalue 7n in this limit: 

n-2 

CCk+l) (ri)kl = Cz+l)%7 
k=O 

n-2 

c(n-k-1) (r$)kl = (n-z-l)y,, 
k=O 

I 
' (4.71) 

which can be compared with (3.83)-(3.85) for the chiral-odd case. The renormalization 
of the flavour singlet part of gy@) (u, p2) (for w and 4 mesons) is complicated by addi- 
tional mixing with the purely gluonic twist 3 distribution amplitudes. For this mixing, no 
simplification occurs in the N, + 00 limit. 

As was discussed for the chiral-odd distribution amplitudes in Sec. 3, another simplifica- 
tion of the evolution equation for gy@)(u, p2) occures at large n with arbitrary N,. In this 
limit, the scale dependence of Gi(p2) and g$(p2) is described by the same equation (4.69) 
with a slightly shifted anomalous dimension 

3;t +- Tn •i- (‘@F - 2Nc) (Inn i- ‘)‘E - i) . 

Combined with this simplification at n + 00, the result at large N, in (4.69) is valid to 

wlw n n n accuracy as was the chiral-odd case in Sec. 3. ( >/ > 

sEq. (6.2) in [ ] 10 for the kernel contains a misprint: the delta function in the last line should be replaced 
by S(cx - u). 
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To summarize this section, we have solved the renormalization of the nonsinglet chiral- 
even twist 3 distribution amplitudes, gy’(u) and gy’(u). We found that in the limits N, + 
oo and n + 00, the scale-dependence of the three-particle contribution to g?‘(u) and gy)(u) 
is described by a simple DGLAP type evolution equation similar to that for the twist 2 
distribution amplitude. Combined with the results of the previous section, this means that 
this simplification for the scale-dependence is universal for all twist 3 nonsinglet distribution 
amplitudes. 

5 Models for Distribution Amplitudes 

In this section we present explicit models for the two-particle distribution amplitudes of 
twist 3, taking into account contributions of the first few conformal partial waves. The 
main observation and important point is that the QCD equations of motion are satisfied 
order by order in the conformal expansion, which guarantees the consistency of the ap- 
proximation. Our approximation thus introduces a minimum number of nonperturbative 
parameters describing matrix elements of certain local operators between the vacuum and 
the meson state, which we estimate using QCD sum rules [29, 31. More sophisticated mod- 
els can be constructed in a systematic way by adding contributions of higher conformal 
partial waves when estimates of the relevant nonperturbative matrix elements will become 
available. 

Our approach involves the implicit assumption that the conformal partial wave expansion 
is well-convergent. This can be justified rigorously at large scales, since the anomalous 
dimensions of twist 2 and twist 3 operators increase logarithmically with the conformal spin 
j, but is nontrivial at relatively low scales of order Jo N (1 - 2) GeV which we choose as 
reference scale. We believe that this assumption is natural and in fact necessary for any 
model of distribution amplitudes at scales where they evolve perturbatively; the last word, 
however, has to come from experiment. 

Since orthogonal polynomials of high orders are rapidly oscillating functions, a trun- 
cated expansion in conformal partial waves almost necessarily is oscillatory as well. Such 
a behaviour is clearly unphysical, but does not constitute a real problem because physical 
observables are given by convolution integrals of distribution amplitudes with smooth coef- 
ficient functions. A classical example for this feature is the yy*-meson form factor which is 
governed by the quantity 

J du ; 4(u) N c ai, 

where the coefficients ui are exactly the “reduced matrix elements” in the conformal expan- 
sion. The oscillating terms are averaged over and strongly suppressed. Stated otherwise: 
models of distribution amplitudes should generally be understood as distributions (in the 
mathematical sense). 
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V Pf K*f 4 

fv[MeV] 198f 7 226 f 28 254f3 

Table 3: Experimental values of couplings to the vector current [30]. 

I V I PA K*f 4 I 

1 fF(l GeV)[MeV] 1 160 f 10 185 f 10 215 f 15 1 

uq(l GeV) 0 0.19 f 0.05 0 

ui(l GeV) 0.18 f 0.10 0.06 f 0.06 0 f 0.1 

a: (1 GeV) 0 0.20 f 0.05 0 

a; (1 GeV) 0.2 f 0.1 0.04 f 0.04 0 f 0.1 

Table 4: The tensor couplings and lowest Gegenbauer moments of vector mesons from QCD 
sum rules, see App. C. 

5.1 Leading twist distributions 

The twist 2 distribution amplitudes of vector mesons have received much attention in the 
literature. Their study was pioneered by Chernyak and Zhitnitsky (see [3] for a comprehen- 
sive review). More recently, the results for p mesons were critically examined in [12]. In 
this paper we complete the update [12] by the reanalysis of SU(3) breaking corrections, see 
App. C. 

A simple model of twist 2 distributions includes contributions of the three lowest con- 
formal spins (“S, P and D waves”): 

+,1(u) = 6uu [l + 3~; e + ui ;(5t2 - l)] , 

h(u) = 6uu [I + 3c.z; r$ + ~2’ ;(5t2 - I)] . 

(5.1) 

(5.2) 

We recall that ?i = 1 - u and < = 2u - 1. The values of the decay constants fv, f; and the 
Gegenbauer moments al, u2 are collected in Tabs. 3 and 4 for V = p, K* and 4 mesons. The 
scaling laws for the coefficients ui and uk are given in Eqs. (4.48) and (3.58), respectively. 

The corresponding distributions, evaluated at p = 1 GeV, are shown in Fig. 1. Note that 
the leading twist distributions for longitudinally and transversely polarized vector mesons 
are very similar to each other. 

In the following we neglect the masses of u and d quarks and do not account for p-w 
mixing. In this approximation the couplings and distribution amplitudes of p*, p” and w 
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 
u u 

Figure 1: (a) Leading twist 2 distribution amplitude $11(u) f or a longitudinally polarized 
vector meson, (b) 41(u) f or a transversely polarized one. Renormalization point is p = 
1 GeV. 

mesons are equal if one chooses properly normalized currents, i.e. (au f dd)/& for the w 
and p” meson, respectively, in Eqs. (2.17), (2.19), (2.21) and (2.22). 

The model distribution amplitudes for the K* meson given by Chernyak and Zhitnitsky 
[31, 31 involve an additional contribution N us@“(~). We have not included this term since 
estimates of high partial waves from QCD sum rules are not reliable. Our estimates for a: 
and ai differ significantly from the results of [31, 31, see Ref. [12] for details. 

5.2 Three-particle distributions of twist three 

Three-particle twist 3 distribution amplitudes were defined in Sec. 2.3 and their conformal 
expansion is considered in detail in Sets. 3 and 4. Assuming SU(3) flavour symmetry, the 
lowest order contributions to the conformal expansion are 

Y(&-j, a,, a,) = 5040 (ad - (Y&.d(Y,~;, F-3) 

d(Qd,&,ag) = 360ada,a~[1 +w~o$i’a, - 3)], (5.4) 

7-(ad, &, Qg) = 5040 (ad - ~u)f&&~;. (5.5) 

Our expressions for V and A agree with the corresponding “asymptotic distributions” in 
[3, 321. The result for 7 is new. An important point to note is that the contribution of 
leading conformal spin j = 7/2 to the distribution amplitudes V and 7 vanishes by virtue 
of G-parity invariance (in the SU(3) limit). H ence, if one takes into account the leading 
j = 7/2 contribution to the distribution A only, it is consistent to put V and ‘T to zero; 
the expressions given in (5.3) and (5.5) correspond to contributions of the next-to-leading 
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conformal spin j = 9/2 and have to be taken into account together with the correction to 
A proportional to w$, which has the same spin. 

The decay constants f3vp, f3Ap and the few first coefficients w&, w$ were estimated from 
QCD sum rules in Ref. [4], in particular9 

f(, = (0.5 - 0.6) - 10m2 GeV2, fc = 0.2 - lop2 GeV2, Ld;‘, = -2.1. , F-6) 

We have derived a new sum rule for f3’, (see App. C) from which we obtain the estimate 

f: = (0.3 f 0.3) - 10T2 GeV2. (5.7) 

Again, the renormalization scale is p = 1 GeV. The anomalous dimensions of the couplings 
can be found in Eqs. (4.66), (4.67) and (3.76). 

Estimates of quark mass corrections are difficult to obtain from such complicated sum 
rules. A detailed study of this point goes beyond the scope of this paper. For the present 
purpose we neglect SU(3) corrections to three-particle distributions and assume that the 
dimensionless couplings <zAYT defined in (3.8) and (4.5) are the same for all vector mesons. 
The most interesting effect which we miss in this “poor-man’s” approximation is that the 
leading conformal spin contribution N 360ado,ai reappears in the distribution amplitudes 
Y and 7 for K’ mesons. These terms deserve a further study. Our preferred values for the 
parameters determining three-particle distributions are collected in Tab. 5. 

5.3 Two-particle distributions of twist three 

As repeatedly emphasized above, the equations of motion allow the elimination of two- 
particle distribution amplitudes of higher twist in favour of leading twist and three-particle 
distribution amplitudes as independent dynamical degress of freedom. With leading twist 
and three-particle distributions as specified above, we get the following exact expressions 
(including terms up to conformal spin 9/2): 

h/;)(u) = 6ufi 
1 
& + f CT) (5e2 - 1)] 

+36+(3u~+~lnti+ulnu)+36-(tilnti-ulnu), (5.8) 

3 
hf)(u) = 3t2 + 2 uf 5(3t2 - 1) + 2 2 3,l c2 (552 - 3) + 3@(3 - 3oe2 + 35t4) 

gThe model distributions proposed in [4] include in addition the j = 11/2 terms with coefficients U$ = 
11.7, wfO = 7 and w2,0 - ” - -1.9. We do not include these contributions for simplicity and because the 
correspdnding QCD sum rules are less reliable. 
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V p* K** i$ 

Table 5: Masses and couplings entering Eqs. (5.8)-(5.11). Renormalization point is ,U = 
1 GeV. We use m,( 1 GeV) = 150 MeV and put the u and d quark mass zero. 

+6~+(3u~+~lnti+ulnu)+6~~(~lnti-ulnu), (5.10) 

0.032 0.032 0.032 

0.013 0.013 0.013 

0.024 0.024 0.024 

-2.1 -2.1 -2.1 

0 0.24 0.46 

0 -0.24 0 

0 0.16 0.33 

0 -0.16 0 

1 

>( 3 - 30J2 + 35E4) 

+~X+(2+lnzl+lnC)+~X-(2[+lnzl-ln~), (5.11) 

where, for simplicity, we used asymptotic leading twist distribution amplitudes in the cor- 
rection terms proportional to quark masses N &.i” 

The resulting p meson distributions are plotted in Fig. 2 together with the corresponding 
asymptotic distributions and with the distributions calculated in the Wandzura-Wilczek 
approximation. It is seen that gluon corrections of twist 3 are generally important and tend 
to broaden the distributions. For the second moments we get (at the scale 1 GeV): 

J 0 ldu(2u - 1)2hf;)(u) = 0.24 (0.20), 

J 0 'du(2u - 1)2h\;)(u) = 0.63 (0.60), 

J 'du(2u - 1)2g~)(u) = 0.25 (0.20), 
0 

(5.12) 

(5.13) 

(5.14) 

loFor realistic parameter values the correction in u2 is small and can safely be neglected. 
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Figure 2: Two-particle twist 3 distribution amplitudes for the p meson. 

J 0 ‘du (2~ - 1)2 &‘(zJ) = 0.47 (0.40), (5.15) 

where the numbers in parenthesis give the asymptotic values. As already mentioned, the 
oscillatory behavior of the distributions depicted in Fig. 2 is an artifact of the expansion 
in orthogonal polynomials and will be smoothened by contributions of higher-order partial 
waves. We expect, nevertheless, that our approximation is sufficient for calculating most 
overlap integrals that appear in physical applications. 

In Fig. 3 we compare the distribution amplitudes of p, K* and 4 mesons, which differ 
due to the nonzero strange quark mass. Note that quark mass corrections to two-particle 
distributions in general involve logarithms of the momentum fraction and are not reduced 
to polynomials. This means that in this case the expansion in conformal partial waves does 
not correspond to an expansion in local operators, which is similar to what was observed in 
[33, 71 for bilinear twist 4 operators. The quark mass effects are not large, but can result 
in a logarithmic enhancement of distributions close to the end-points u + 0 and u + 1, 
see Eqs. (5.8)-(5.11) and Fig. 3. Because of that, the calculation of SU(3) breaking effects 
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Figure 3: Two-particle twist 3 distribution amplitudes for the p, K* and 4 meson. 

requires caution for physical observables which are sensitive to the end-point region where 
the linear approximation in m, breaks down.” 

6 Summary and Conclusions 

In the present paper, we have studied the twist three distribution amplitudes of vector 
mesons in QCD and expressed them in a model-independent way by a minimal number 
of nonperturbative parameters. The one key ingredient in our approach was the use of 
the QCD equations of motion which allowed us to reveal the interrelations between the 

“For finite quark masses, renormalization also gets complicated due to the absence of conformal symmetry. 
For example, OF,n--k-2 could receive additional mixing not only with m,&,, but also with operators 
involving total derivatives (see Eqs. (3.67) and (4.47)). Therefore, the scale dependence of ~TwE,-~-~ 
may not be described by a simple extension of the anomalous dimension matrix involving the mixing 
with m Q v n r, which is in contrast to the renormalization of twist 3 parton distributions. The complete f a” _ 
clarification of this point is beyond the scope of this work. 
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different distribution amplitudes of a given twist and to obtain exact integral representations 
for distribution amplitudes that are not dynamically independent. The other ingredient 
was the use of conformal expansion which, analogously to partial wave decomposition in 
quantum mechanics, allows one to separate transverse and longitudinal variables in the wave 
function: The dependence on transverse coordinates is represented as scale-dependence of 
the relevant operators and is governed by renormalization-group equations, the dependence 
on the longitudinal momentum fraction is described in terms of irreducible presentations of 
the corresponding symmetry group, the collinear conformal group SL(2,R). The conformal 
partial wave expansion is explicitly consistent with the equations of motion since the latter 
are not renormalized. The expansion thus makes maximum use of the symmetry of the 
theory in order to simplify the dynamics, which is related, in the perturbative domain, to 
renormalization properties of twist three operators. 

As it was known for some time [26, 251, anomalous dimensions of twist three operators 
increase logarithmically with the spin. Like in the leading twist case, this property ensures 
convergence of the conformal expansion at sufficiently large scales and suggests that only 
the few lowest “harmonics” are important in calculations of physical observables. 

Based on this assumption, we have derived explicit and consistent models for all two- 
and three-particle distribution amplitudes of p, w, K* and 4 mesons of twist two and three 
including contributions up to conformal spin j = 9/2. The relevant nonperturbative pa- 
rameters (“reduced matrix elements”) were estimated from QCD sum rules. The results are 
immediately applicable to a range of phenomenologically interesting processes like exclusive 
semileptonic or radiative B decays and hard electroproduction of vector mesons at HERA. 

Our formalism is - in principle - applicable to arbitrary twist, although its realization 
will become technically more involved. The application to twist four distribution amplitudes 
of vector mesons will be presented elsewhere. 
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A Formulae for Orthogonal Polynomials 

In this appendix, we collect useful formulae for the orthogonal polynomials which appear in 
the conformal expansion. 
Differentiation formula for Gegenbauer polynomials: 

$1 - t2)q2([) = -(n + l)(n + 2)cy2(E). 
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Differentiation formulae for Jacobi polynomials: 

ALpp)(~) = n + VI ; v2 + Qvlw2+l'(~), 

(1 +()P(lJ)(g = 2d 
1 

(n + 1) 
n d( (n + 2)(2n + 3) e%) (0 

+ --&Pzy(t) + ~Ppyg] . 
2n+3 

The equation (A-3) is obtained from (A.2) combined with (A.4) below. 
Recurrence formulae for Jacobi polynomials: 

(1 + [)Pyg = n 
(n + W + 3) p(~,l)(o + p(l,l)(t) + n + 1 (I,I) 

(n-t 2)(2n+3) n+l n 
m+n-1 (t) 

= 2;; 1:’ (PpQ) + P;;;‘(g) ) 

(1 - [)P(lJ)([) = n 2;; 1:’ (Pp’g) - P$‘([)) ) 

PC’O’(<) = f-$PpyE) - &P;Ly(E) 

= J-+Ppl)([) + &P::)(E), 
27x-l-l 

P;““‘(t) + PZQ) = (1 + c)P;“qQ, 

Ppy[) - P$$‘([) = (1 - E)Pp’([). 

Relations between Jacobi and Gegenbauer polynomials: 

(1 + E)P$qJ) + (1 - <)Pp”)(<) = 2qy2(E), 

(1 + J)P;“q~) - (1 - E)PpO’(E) = 2Cj$(& 

(n + 2)PA171)(E) = ZCi/“(<). 

Orthogonality relations for Appell polynomials [19]: 

(A4 

(A4 

(A4 

(A.5) 

(A.6) 

(A.7) 

(A-8) 

(A.9) 

(A.10) 

(AN) 

(A.12) 

J m2 ww@k,l (Qd, NJ Jm,n (Qd, %J = 6 (-l)"+l 
k+“m+n2k+1+3(k + 1 + 3)(2/c + 2Z+ 5)!! 

~f-$+') ' ' 
(A.13) 
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where Wan’+‘) = dmn+n J k,l ad, au)/dc$da~ is a (k $ I+ 1) x (k + 1-k 1 ( 
This result can be obtained from the following relations: 

.) symmetric matrix. 

0 (m+n<k+l) 
= (- l)“+“k!z! 

6,‘k2k+‘+3(k + 1-t 3)(2k + 21+ 5)!! 
(m+n=k+Z), 

(A.14) 

while the integral is in general nonzero for m + n > k + 1. 
Integral formulae for Appell polynomials: 

d uda J J z 
da, ’ ( a d 

duo dO 
- 

l-f&-a, addad + au da, 
--1 o!&( 

) 

_ UT4 k!l!(-1)” k-l 

2 (k+Z+2)! k+Z+3 pIi:‘;;2 K> + P/!:‘l’!lK) 7 

- ad - h)2Jk,+d, au) = 

(A.15) 

$ L” dad ~8~%JU%(l - W - %&h&Q, au) = 

= E k!l!(-1)” k-l 
2 (k+l+3)! k+Z+3 p,‘$;:,(t) - P,(~;~l(~) (A.16) 

ad&$ - ad - h)2Jk,&‘d, ffu) = 

_ uu k!l!(-1)” 
2 (k+Z+ 3)! 

(Ic + ’ + 2)(k + ’ + 4, +&J) + (k _ E)p(l 1) 
k-f-li-3 k+ll+l * (F)] (A.17) 

l (“+&) U1--Qd-& d&j ad&(1 - ad - au)2Jk,&d, a,) = 

k!l!(-1)” 
-Ic + z = (k+Z+3)!4 2k+21+5 (~El(O - p,‘%,(E)) 

(A.18) 

The results (A.15)-(A.17) can be obtained by differentiating and/or integrating the Appell 
polynomials Jk,l(od, a,) term by term. To obtain (A.18), it is convenient to calculate its 
derivative first, which can be done similarly to (A.15), (A.16) and (A.17), and then integrate 
the result with the condition that it vanishes at u = 0. 
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B Conformal Expansion of Wandzura-Wilczek Con- 
tributions 

In this appendix we explain the structure of the conformal expansion of the Wandzura- 
Wilczek contributions to twist 3 chiral-odd two-particle distribution amplitudes, Eq. (3.40). 
As mentioned in Sec. 3.2, the conformal spin assignment for these terms seemingly does not 
match the expansion in Eqs. (3.30) and (3.31), which calls for an explanation. 

The basic idea is the following: the expansion derived in Eqs. (3.30) and (3.31) is based 
on the conformal expansion of the corresponding operators. The distribution amplitudes 
hfiy and hB’ are obtained as matrix elements of these operators between the vacuum and 
the longitudinally polarized p meson state. We call the state conformal and assign a cor- 
responding conformal spin, if it is annihilated by a conformal operator. The difficulty 
with the Wandzura-Wilczek terms is due to the fact that these contributions involve ma- 
trix elements over the p meson with a different (transverse) polarization. Working out the 
Wandzura-Wilczek contributions to h//j, 1”’ h essentially corresponds to reexpressing these 
matrix elements in terms of similar matrix e I ements over the longitudinally polarized meson, 
using Lorentz symmetry. In our context it is important that the transversely polarized state 
is related (in the p meson rest frame) to the longitudinally polarized state by a spin rotation 
which does not commute with the generators of the collinear conformal group. Working out 
the necessary commutation relations, we reproduce the particular spin structure appearing 
in (3.40). 

It is convenient to work in the helicity basis: p meson states with X = fl correspond to 
transverse polarization, X = 0 denotes the longitudinal polarization. Equation (3.54) reads 

f,'d cx wtlP(P,~ = w, (B.1) 

where the proportionality factor is irrelevant for what follows. Following Ohrndorf [18], we 
define a set of eigenstates Ij, m) with conformal spin j and the “third projection” of the 
spinm=j,j+l,j+2,...,such that 

Jdj, m> = mlj, m), J2b7 m) = j(j - 1)l.A m), 

J-lj,m> = -(j - m)lj,m - l), J+lim> = (j +m)lj,m+ 1). (B.2) 

The generators Jh, J3 satisfy the canonical commutation relations of the algebra of the group 
of hyperbolic rotations, 0(2,1), and are related to the generators of the collinear conformal 

!FOUP bY 
J+ = +I', J- = AK,, J3 = ;(D + M;.), 

where Pp and M,, are the usual generators of Poincare group, D is the generator of dilata- 
tions and Kp generates conformal transformations. Note that J+ and J- are just “step-up” 
and “step-down” operators in this basis; the state with the lowest value of m, mmin = j, is 
annihilated by J-. 
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Following the discussion in Ref. [18], it is easy to show that 

J-~~IO) = [L, LyJO) = 0, J&,llO) = (72 + 2)s2,l]O), J”i-l,ljO) = (n + 2)(n + l)s-l;lo), 
(B.4) 

so that we can identify 
In + 2, n + 2) - n;lO), (B-5) 

and rewrite Eq. (B.l) as 

f:u,’ cx (n + 2, n + 2]p(P, A = &l)). (B-6) 

This confirms that a; corresponds to conformal spin j = n + 2, as stated in the main text. 
To determine the corresponding contribution to $1 (t), hfi”‘, we have to recast Eq. (B.6) in 

a different form corresponding to a matrix element over the longitudinally polarized meson. 
For definiteness, take X = +l. In the p meson rest frame the X = +l state is related to the 
X = 0 state by the spin rotation 

Ip(P = 0, x = +1)) cx (M23 + iM&(P = 0, x = O)), (B.7) 

where (M23 + iA&) is the step-up operator of ordinary angular momentum. ]p(P, A)) is 
then obtained by a Lorentz boost in P3 direction: 

where 

We can thus write 

where 

IP(E 3) = w4IPP = 0,4>, W) 

U(w) = e-iWM03 = e-iwM*., th(w) = p3/po, P.9) 

gut cx PMe A = w, (B.lO) 

I@) = u(u)(hf23 + iMl3) i?f-‘(u)ln + 2, n + 2). (B.11) 

In the following we demonstrate that IQ) is given by a superposition of three conformal 
states, 

ls)=Clln+~,n+~)+C21n+~,n+~)+C31n+~,n+~), (B.12) 

where the Ck are C-numbers. If established, Eq. (B.12) shows that contributions of a: to 
the matrix element over a longitudinal p meson correspond to conformal spins j = n + i 
and j = n + $, which explains the pattern appearing in Eq. (3.40). 

To prove (B.12), we first note that 

U(W) (h&3 + i443) U-‘(W) = M23 ch(w) + 2Mzo sh(w) + i(k53 ch(w) + &o sh(w)}. (B.13) 

From this and Eq. (B.ll), it follows 

IQ) = [exp(w)/2 (Ms. + iMi.) - exp(-w) (A&, + iMi,)] In + 2, n + 2) 
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with 9 = (1,&O, -1) and pp = (l,O,O, 1) (note that p. z = 2). Applying to (B.14) the 
commutation relations 

[J3, A&. + iA&.] = -; (M2. + i&), [J3, M2* + iMl,] = f (1M2, + ikfl,) (B.15) 

and 

[L, M2. + iA!&] = 0, [J-, M2, + iA&,] oc K2 + iK1, [J-, K2 + iK1] = 0, (B.16) 

it immediately follows that 

(M2. + iMl.)ln + 2, n + 2) cc In + i, n + t,, 

(M2, + iMh) In + 2, n + 2) cx alIn+ i,n+ g) +u2ln+ f,n+ g), (B.17) 

with C-number coefficients oi, which proves Eq. (B.12). 
A similar discussion also explains the mismatch observed in Eq. (4.31) for chiral-even 

distribution amplitudes. 

C QCD Sum Rules for Expansion Coefficients of Dis- 
tribution Amplitudes 

The method of QCD sum rules in its application to distribution amplitudes of light mesons 
was pioneered by Chernyak and Zhitnitsky and is comprehensively discussed in [3]. In this 
appendix we collect QCD sum rules and results for the twist 2 distribution amplitudes of the 
vector mesons p, K* and 4 as well as for the twist 3 distribution amplitudes of the p meson. 
Numerical results presented below are obtained using the following input parameters: 

R&(1 GeV) = (150 f 50) MeV, (:G2) = ( 0.012 f 0.006) GeV4, 

(tjq) (1 GeV) = (-240 f 20) MeV3, (Ss)(l GeV) = 0.8(&)(1 GeV), 

(@gGq)(l GeV) = 0.8(&)(1 GeV), (sagGs)(l GeV) = 0.8(@gGq)(l GeV), 
A(3) 
QCD = 400 MeV + a,( 1 GeV) = 0.56 (C.1) 

and assuming factorization of the vacuum expectation values of four-fermion operators. 
The SU(3) breaking effects in the sum rules are due to explicit corrections proportional 
to the quark masses, the difference in values of the condensates of strange and nonstrange 
quarks, and differences in the values of the continuum thresholds SO and Bore1 parameters 
M2. Instead of fitting the continuum thresholds separately for each meson and for each 
sum rule, in this paper we prefer to determine SO+, from the simplest sum rules for vector 
(tensor) couplings and use the relations 

s&K* - s&p = mf.(. - mz, SO,~ - ~0,~ = mz - mz, (C.2) 
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which are known to hold with reasonable accuracy for the spectra of resonances in the 
respective channels, Similar relations are assumed between the “working windows” in the 
Bore1 parameter. 

C.l Distribution amplitudes of twist two 

Most of the relevant formulas were previously obtained in [31, 3, 121. For the p meson, we 
quote the results from [12]. For the other mesons we present a new analysis which includes 
the radiative corrections calculated in [12] and the SU(3) breaking terms calculated in [31]. 
Unlike in Ref. [3, 311, where sum rules for the moments of distribution amplitudes were 
derived, we prefer to consider the sum rules directly for the coefficients a, (Gegenbauer 
moments) in the conformal expansion, see [12] for a discussion. 

QCD sum rules for even Gegenbauer moments can be derived from the diagonal corre- 
lation functions of the conformal operators introduced in Sec. 3.3 and Sec. 4.3: 

D;{*l = i d4y ei”“(Ol~R~{‘}(y)~~“t’}(0)lO), 
J 

see Eqs. (3.53)-(3.55) and (4.45)-(4.47) for precise definitions. 

(C-3) 

One finds the following sum rules for vector 
meson: 

and tensor couplings [29, 311 of the K* 

(fZ* (p))2e-“2* Pf2 = (y@lJ~ { 1 + G(P2) - as@f2) d- %Y1) 
zh i&F-$)j” 

- & ?iis (sagGs) - gy$ ((@I)” + w2)] ’ (C-5) 

In the sum rule for f&, ,& = 9, /3i = 64, and 7+(i) = 310/9 (for three running flavours) is 
the two-loop anomalous dimension calculated in [34]. 

For arbitrary (even) Gegenbauer moments one obtains: 

3(n + ‘)cn + 2, f$eu$)e-m$e/M2 _ - 
2(2n + 3) 
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=- 2k2 : M2 1 - e-‘ilM2 rdu uU CE/2(2u - 1) ln2 ” + 
U 

&ms(%)(n+l)(n+2) 

1 
+ 24M2 

(n + l)(n + 2) - & ms(gagGs)n(n + l)(n + 2)(n + 3) 

- ‘yit) (@)(%)(n + l)(n + 2) + j&$ ((ijq)2 + (Ss)2)(n + l)2(n + 2)2, (C.6) 

3(n + l)(n + 2) 

2(2n + 3) 
(fZ* (p))2u,l(p)e-m:*lM2 = 

= & % M2 (1 - e-sk’M2) ~1d~~tiC~/2(2~ - 1) (lnu + 1nG + ln2 i) 

1 
+ 24M2 

(n” + 3n - 2) - & 7% (SogGs) (n + 1) (n + 2) (n” + 3n + 8) 

+ 2 ((p-j)” + (i%)2)(n - l)(n + l)(n + 2)(n + 4) + &Wi.(3s)(n + l)(n + 2). 

(C.7) 

The sum rules for p are obtained by setting m, zero and s to q in the condensates. For 
$, one has to replace q by s in the condensates and to double the terms linear in m,. On 
the left-hand sides one has to insert the proper meson masses. All renormalization scale 
dependent quantities are evaluated at the scale p N 1 GeV. 

Gegenbauer moments with odd n are nonvanishing for the K* meson only. They can be 
determined most conveniently from the nondiagonal correlation functions12 

NDI1(‘} = i 
J 

d4y eip”(OlTS2~{1}(y)~~t”}(0) IO). 

The sum rules read [31]: 

3(n + l)(n + 2) 
2(2n + 3) 

f~*(~)fK*mK*ull(~)e-m2K*‘M2 = 

3 
= ~?iisM2 l-e -4QM2 

> 
+ i(n + l)(n + 2)((B) - (fjq)) 

- & (n + l)“(n + 2)2((wGs) - (qa&)), 
3(n + l)(n + 2) 

2(2n + 3) 
f& (~)fK*mK*unl(~)e-mK*‘M2 = 

(C.8) 

(C.9) 

12Since perturbative contributions to Den) vanish for odd n. Note also that from ND(O) one obtains the 
relative sign between fv and f;. 
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= ?& msM2 (1 - e-st/M2 ) + i(n + l>(n + 2)((34 - @>> 

- & (n + l)(n + 2)(n2 + 3n + 4)((SagGs) - (@gGq)). 

In these sum rules again the right-hand sides are to be evaluated at fixed scale ,!L of order 
1 GeV. 

The results are collected in Tab. 4, where the quoted errors are due to uncertainties 
in input parameters and to the variation of the Bore1 parameter within the range M2 z 
(1 - 2) GeV2 (for the p meson), with the value of the continuum threshold s!,, = 1.5 GeV2 
fitted to reproduce the experimental value of the vector coupling. As discussed in detail in 
[12], the sum rule for the tensor couplings contains contaminating contributions of states 
with the opposite parity l+, which can be effectively taken into account by using a lower 
value of the continuum threshold so,P - ’ - 1.2 GeV2. For other mesons, we assume validity 
of the relations (C.2). Note that in the numerical analysis of Gegenbauer moments we 
substitute the couplings on the left-hand sides by their sum rules (C.4) and (C.5) rather 
than using the values given in the table. . 

C.2 Distribution amplitudes of twist three 

The vector f3vp and axial f3Ap twist 3 couplings are defined as the local matrix elements 

(016, [sc,(it;.) - (h)gG,,~] u/p+) = (Ol@+ [gG,c&.) - (6.)gGph] dip-) 

= +4 p&t& - p,e~)f3~ + . . . , (C.11) 

OWYp%&xp~IP+) = (O~WP~~g~x,dlp-) = p,(p,ei - pxei),f& + . . . , (C.12) 

and have been estimated using the sum rule approach in Ref. [35] together with a few matrix 
elements of higher dimension (and conformal spin). The results are given in the text13. 

The tensor coupling is defined as 

(Oldo,. [gG”(iz.) - (iE.)gG”] ulp) = (ez)(pz)2m,f,T, (C.13) 

and can be estimated from correlation functions of this operator with the vector and/or 
tensor current. The correlation function with the vector current is chirality-violating and is 
expanded in operators with odd dimension. The leading contribution of the mixed quark- 
gluon condensate, however, vanishes, and the first corrections comes from dimension 7 
operators whose vacuum expectation values are known only very poorly. For this reason 

13Apparently the corresponding sum rules have never been published and are not available. We thank 
V. Chernyak for correspondence on this point. 
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this sum rule is essentially useless. From the “diagonal” correlation function with the tensor 
current, 

i / d4y eiqy (OITd(y)a,. [gG”(&) - (ih.)gGp*] u(y)u(O)~,.d(O)lO), (C.14) 

we obtain the sum rule 

e-“~/“‘m,f~(p)f~(p) = & ~sodse-BIM2 + $ ( : G2) + & xxs(fjq)2, (C.15) 

which we have studied numerically. As a general feature of the sum rules for matrix elements 
of operators with high dimension, this sum rule is dominated at small M2 ~(1-2) GeV2 by 
the condensates of high dimension (four-quark operators, for the case at hand) and is not 
stable. At larger values of the Bore1 parameter the stability of the sum rule is very much 
improved, suggesting the value f3Tp(l GeV) M 0.3 . 10s2 GeV2. This number has to be 
considered as a rough estimate, however, since at large values of the Bore1 parameter the 
contributions of higher mass resonances and of the continuum are out of control. Note that, 
similar to the case of the twist 2 tensor coupling considered above, the sum rule (C.15) 
includes contributions of states with opposite (positive) parity. Ascribing a 100% error to 
this result, we arrive at the range given in (5.7) as our best estimate. 
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